IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0126443.html
   My bibliography  Save this article

Applying Data Envelopment Analysis to Preventive Medicine: A Novel Method for Constructing a Personalized Risk Model of Obesity

Author

Listed:
  • Hiroto Narimatsu
  • Yoshinori Nakata
  • Sho Nakamura
  • Hidenori Sato
  • Ri Sho
  • Katsumi Otani
  • Ryo Kawasaki
  • Isao Kubota
  • Yoshiyuki Ueno
  • Takeo Kato
  • Hidetoshi Yamashita
  • Akira Fukao
  • Takamasa Kayama

Abstract

Data envelopment analysis (DEA) is a method of operations research that has not yet been applied in the field of obesity research. However, DEA might be used to evaluate individuals’ susceptibility to obesity, which could help establish effective risk models for the onset of obesity. Therefore, we conducted this study to evaluate the feasibility of applying DEA to predict obesity, by calculating efficiency scores and evaluating the usefulness of risk models. In this study, we evaluated data from the Takahata study, which was a population-based cohort study (with a follow-up study) of Japanese people who are >40 years old. For our analysis, we used the input-oriented Charnes-Cooper-Rhodes model of DEA, and defined the decision-making units (DMUs) as individual subjects. The inputs were defined as (1) exercise (measured as calories expended) and (2) the inverse of food intake (measured as calories ingested). The output was defined as the inverse of body mass index (BMI). Using the β coefficients for the participants’ single nucleotide polymorphisms, we then calculated their genetic predisposition score (GPS). Both efficiency scores and GPS were available for 1,620 participants from the baseline survey, and for 708 participants from the follow-up survey. To compare the strengths of the associations, we used models of multiple linear regressions. To evaluate the effects of genetic factors and efficiency score on body mass index (BMI), we used multiple linear regression analysis, with BMI as the dependent variable, GPS and efficiency scores as the explanatory variables, and several demographic controls, including age and sex. Our results indicated that all factors were statistically significant (p

Suggested Citation

  • Hiroto Narimatsu & Yoshinori Nakata & Sho Nakamura & Hidenori Sato & Ri Sho & Katsumi Otani & Ryo Kawasaki & Isao Kubota & Yoshiyuki Ueno & Takeo Kato & Hidetoshi Yamashita & Akira Fukao & Takamasa Ka, 2015. "Applying Data Envelopment Analysis to Preventive Medicine: A Novel Method for Constructing a Personalized Risk Model of Obesity," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.
  • Handle: RePEc:plo:pone00:0126443
    DOI: 10.1371/journal.pone.0126443
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126443
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0126443&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0126443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    2. Peter Bogetoft & Lars Otto, 2011. "Data Envelopment Analysis DEA," International Series in Operations Research & Management Science, in: Benchmarking with DEA, SFA, and R, chapter 0, pages 81-113, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moragues, Raul & Aparicio, Juan & Esteve, Miriam, 2023. "An unsupervised learning-based generalization of Data Envelopment Analysis," Operations Research Perspectives, Elsevier, vol. 11(C).
    2. Higham, L.E. & Handel, I. & Boden, L. & Moran, D., 2024. "Benchmarking sustainability performance in UK free-range laying hen flocks," Agricultural Systems, Elsevier, vol. 221(C).
    3. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    4. Christian Growitsch & Tooraj Jamasb & Christine Müller & Matthias Wissner, 2016. "Social Cost Efficient Service Quality: Integrating Customer Valuation in Incentive Regulation—Evidence from the Case of Norway," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 71-91, Springer.
    5. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499.
    6. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    7. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    8. repec:lan:wpaper:1115 is not listed on IDEAS
    9. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    10. Ruiqing Yuan & Xiangyang Xu & Yanli Wang & Jiayi Lu & Ying Long, 2024. "Evaluating Carbon-Emission Efficiency in China’s Construction Industry: An SBM-Model Analysis of Interprovincial Building Heating," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    11. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    12. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    13. Bo Li & Muhammad Mohiuddin & Qian Liu, 2019. "Determinants and Differences of Township Hospital Efficiency among Chinese Provinces," IJERPH, MDPI, vol. 16(9), pages 1-16, May.
    14. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    15. Nijkamp, P. & Stough, R. & Sahin, M., 2009. "Impact of social and human capital on business performance of migrant entrepreneurs - a comparative dutch-us study," Serie Research Memoranda 0017, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    16. Bowlin, W. F., 1995. "A characterization of the financial condition of the United States' aerospace-defense industrial base," Omega, Elsevier, vol. 23(5), pages 539-555, October.
    17. Zhang, Chonghui & Bai, Chen & Su, Weihua & Balezentis, Tomas, 2024. "The centralised data envelopment analysis model integrated with cost information and utility theory for power price setting under carbon peak strategy at the firm-level," Energy, Elsevier, vol. 292(C).
    18. Mika Kortelainen & Timo Kuosmanen, 2007. "Eco-efficiency analysis of consumer durables using absolute shadow prices," Journal of Productivity Analysis, Springer, vol. 28(1), pages 57-69, October.
    19. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    20. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    21. repec:lan:wpaper:4471 is not listed on IDEAS
    22. Muhammad Jam e Kausar Ali Asghar & Abdul Zahid Khan & Hafiz Ghufran Ali Khan, 2019. "Economies of Scale and Efficiency of Mutual Funds in Pakistan," Global Regional Review, Humanity Only, vol. 4(1), pages 96-103, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0126443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.