IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0126141.html
   My bibliography  Save this article

Research on Laser Marking Speed Optimization by Using Genetic Algorithm

Author

Listed:
  • Dongyun Wang
  • Qiwei Yu
  • Yu Zhang

Abstract

Laser Marking Machine is the most common coding equipment on product packaging lines. However, the speed of laser marking has become a bottleneck of production. In order to remove this bottleneck, a new method based on a genetic algorithm is designed. On the basis of this algorithm, a controller was designed and simulations and experiments were performed. The results show that using this algorithm could effectively improve laser marking efficiency by 25%.

Suggested Citation

  • Dongyun Wang & Qiwei Yu & Yu Zhang, 2015. "Research on Laser Marking Speed Optimization by Using Genetic Algorithm," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-10, May.
  • Handle: RePEc:plo:pone00:0126141
    DOI: 10.1371/journal.pone.0126141
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126141
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0126141&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0126141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rego, César & Gamboa, Dorabela & Glover, Fred & Osterman, Colin, 2011. "Traveling salesman problem heuristics: Leading methods, implementations and latest advances," European Journal of Operational Research, Elsevier, vol. 211(3), pages 427-441, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zutong & Guo, Jiansheng & Zheng, Mingfa & Wang, Ying, 2015. "Uncertain multiobjective traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 478-489.
    2. Aliyev, Denis A. & Zirbel, Craig L., 2023. "Seriation using tree-penalized path length," European Journal of Operational Research, Elsevier, vol. 305(2), pages 617-629.
    3. Lancia, Giuseppe & Vidoni, Paolo, 2020. "Finding the largest triangle in a graph in expected quadratic time," European Journal of Operational Research, Elsevier, vol. 286(2), pages 458-467.
    4. Sebastian Henn & André Scholz & Meike Stuhlmann & Gerhard Wäscher, 2015. "A New Mathematical Programming Formulation for the Single-Picker Routing Problem in a Single-Block Layout," FEMM Working Papers 150005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    5. Taillard, Éric D., 2022. "A linearithmic heuristic for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 442-450.
    6. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    7. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
    8. Taillard, Éric D. & Helsgaun, Keld, 2019. "POPMUSIC for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 272(2), pages 420-429.
    9. Zhang, Zhe & Gong, Xue & Song, Xiaoling & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "An effective two phase heuristic for synchronized seru production scheduling and 3PL transportation problems," International Journal of Production Economics, Elsevier, vol. 268(C).
    10. Mladenović, Nenad & Urošević, Dragan & Hanafi, Saı¨d & Ilić, Aleksandar, 2012. "A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 220(1), pages 270-285.
    11. Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
    12. Shengbin Wang & Weizhen Rao & Yuan Hong, 2020. "A distance matrix based algorithm for solving the traveling salesman problem," Operational Research, Springer, vol. 20(3), pages 1505-1542, September.
    13. Pawel Sitek & Jarosław Wikarek, 2019. "Capacitated vehicle routing problem with pick-up and alternative delivery (CVRPPAD): model and implementation using hybrid approach," Annals of Operations Research, Springer, vol. 273(1), pages 257-277, February.
    14. Kalliopi Kastampolidou & Christos Papalitsas & Theodore Andronikos, 2022. "The Distributed Kolkata Paise Restaurant Game," Games, MDPI, vol. 13(3), pages 1-21, April.
    15. Saïd Hanafi & Raca Todosijević, 2017. "Mathematical programming based heuristics for the 0–1 MIP: a survey," Journal of Heuristics, Springer, vol. 23(4), pages 165-206, August.
    16. Thomas Weise & Yuezhong Wu & Raymond Chiong & Ke Tang & Jörg Lässig, 2016. "Global versus local search: the impact of population sizes on evolutionary algorithm performance," Journal of Global Optimization, Springer, vol. 66(3), pages 511-534, November.
    17. Martin Bichler, 2020. "Comments on: Shared resources in collaborative vehicle routing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 21-24, April.
    18. Luca Cicala & Francesco Gargiulo & Sara Parrilli & Donato Amitrano & Gianpaolo Pigliasco, 2024. "Progressive Monitoring of Micro-Dumps Using Remote Sensing: An Applicative Framework for Illegal Waste Management," Sustainability, MDPI, vol. 16(13), pages 1-24, July.
    19. Kalliopi Kastampolidou & Christos Papalitsas & Theodore Andronikos, 2021. "DKPRG or how to succeed in the Kolkata Paise Restaurant gamevia TSP," Papers 2101.07760, arXiv.org.
    20. Xu, Liang & Xu, Zhou & Xu, Dongsheng, 2013. "Exact and approximation algorithms for the min–max k-traveling salesmen problem on a tree," European Journal of Operational Research, Elsevier, vol. 227(2), pages 284-292.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0126141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.