IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0123785.html
   My bibliography  Save this article

Evolutionary Conservation of Bacterial Essential Metabolic Genes across All Bacterial Culture Media

Author

Listed:
  • Oren Ish-Am
  • David M Kristensen
  • Eytan Ruppin

Abstract

One of the basic postulates of molecular evolution is that functionally important genes should evolve slower than genes of lesser significance. Essential genes, whose knockout leads to a lethal phenotype are considered of high functional importance, yet whether they are truly more conserved than nonessential genes has been the topic of much debate, fuelled by a host of contradictory findings. Here we conduct the first large-scale study utilizing genome-scale metabolic modeling and spanning many bacterial species, which aims to answer this question. Using the novel Media Variation Analysis, we examine the range of conservation of essential vs. nonessential metabolic genes in a given species across all possible media. We are thus able to obtain for the first time, exact upper and lower bounds on the levels of differential conservation of essential genes for each of the species studied. The results show that bacteria do exhibit an overall tendency for differential conservation of their essential genes vs. their non-essential ones, yet this tendency is highly variable across species. We show that the model bacterium E. coli K12 may or may not exhibit differential conservation of essential genes depending on its growth medium, shedding light on previous experimental studies showing opposite trends.

Suggested Citation

  • Oren Ish-Am & David M Kristensen & Eytan Ruppin, 2015. "Evolutionary Conservation of Bacterial Essential Metabolic Genes across All Bacterial Culture Media," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-15, April.
  • Handle: RePEc:plo:pone00:0123785
    DOI: 10.1371/journal.pone.0123785
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123785
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0123785&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0123785?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Csaba Pál & Balázs Papp & Laurence D. Hurst, 2003. "Rate of evolution and gene dispensability," Nature, Nature, vol. 421(6922), pages 496-497, January.
    2. Aaron E. Hirsh & Hunter B. Fraser, 2001. "Protein dispensability and rate of evolution," Nature, Nature, vol. 411(6841), pages 1046-1049, June.
    3. Aaron E. Hirsh & Hunter B. Fraser, 2003. "Rate of evolution and gene dispensability," Nature, Nature, vol. 421(6922), pages 497-498, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Wagner, 2002. "Mutational Robustness and Asymmetric Functional Specialization of Duplicate Genes," Working Papers 02-02-006, Santa Fe Institute.
    2. Chao Qin & Yongqi Sun & Yadong Dong, 2016. "A New Method for Identifying Essential Proteins Based on Network Topology Properties and Protein Complexes," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-30, August.
    3. Sarosh N Fatakia & Stefano Costanzi & Carson C Chow, 2011. "Molecular Evolution of the Transmembrane Domains of G Protein-Coupled Receptors," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
    4. Martin Ackermann & Lin Chao, 2006. "DNA Sequences Shaped by Selection for Stability," PLOS Genetics, Public Library of Science, vol. 2(2), pages 1-7, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0123785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.