IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0027813.html
   My bibliography  Save this article

Molecular Evolution of the Transmembrane Domains of G Protein-Coupled Receptors

Author

Listed:
  • Sarosh N Fatakia
  • Stefano Costanzi
  • Carson C Chow

Abstract

G protein-coupled receptors (GPCRs) are a superfamily of integral membrane proteins vital for signaling and are important targets for pharmaceutical intervention in humans. Previously, we identified a group of ten amino acid positions (called key positions), within the seven transmembrane domain (7TM) interhelical region, which had high mutual information with each other and many other positions in the 7TM. Here, we estimated the evolutionary selection pressure at those key positions. We found that the key positions of receptors for small molecule natural ligands were under strong negative selection. Receptors naturally activated by lipids had weaker negative selection in general when compared to small molecule-activated receptors. Selection pressure varied widely in peptide-activated receptors. We used this observation to predict that a subgroup of orphan GPCRs not under strong selection may not possess a natural small-molecule ligand. In the subgroup of MRGX1-type GPCRs, we identified a key position, along with two non-key positions, under statistically significant positive selection.

Suggested Citation

  • Sarosh N Fatakia & Stefano Costanzi & Carson C Chow, 2011. "Molecular Evolution of the Transmembrane Domains of G Protein-Coupled Receptors," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
  • Handle: RePEc:plo:pone00:0027813
    DOI: 10.1371/journal.pone.0027813
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027813
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0027813&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0027813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Csaba Pál & Balázs Papp & Laurence D. Hurst, 2003. "Rate of evolution and gene dispensability," Nature, Nature, vol. 421(6922), pages 496-497, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oren Ish-Am & David M Kristensen & Eytan Ruppin, 2015. "Evolutionary Conservation of Bacterial Essential Metabolic Genes across All Bacterial Culture Media," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-15, April.
    2. Chao Qin & Yongqi Sun & Yadong Dong, 2016. "A New Method for Identifying Essential Proteins Based on Network Topology Properties and Protein Complexes," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-30, August.
    3. Martin Ackermann & Lin Chao, 2006. "DNA Sequences Shaped by Selection for Stability," PLOS Genetics, Public Library of Science, vol. 2(2), pages 1-7, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0027813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.