IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0121028.html
   My bibliography  Save this article

Dynamics of On-Off Neural Firing Patterns and Stochastic Effects near a Sub-Critical Hopf Bifurcation

Author

Listed:
  • Gu Huaguang
  • Zhao Zhiguo
  • Jia Bing
  • Chen Shenggen

Abstract

On-off firing patterns, in which repetition of clusters of spikes are interspersed with epochs of subthreshold oscillations or quiescent states, have been observed in various nervous systems, but the dynamics of this event remain unclear. Here, we report that on-off firing patterns observed in three experimental models (rat sciatic nerve subject to chronic constrictive injury, rat CA1 pyramidal neuron, and rabbit blood pressure baroreceptor) appeared as an alternation between quiescent state and burst containing multiple period-1 spikes over time. Burst and quiescent state had various durations. The interspike interval (ISI) series of on-off firing pattern was suggested as stochastic using nonlinear prediction and autocorrelation function. The resting state was changed to a period-1 firing pattern via on-off firing pattern as the potassium concentration, static pressure, or depolarization current was changed. During the changing process, the burst duration of on-off firing pattern increased and the duration of the quiescent state decreased. Bistability of a limit cycle corresponding to period-1 firing and a focus corresponding to resting state was simulated near a sub-critical Hopf bifurcation point in the deterministic Morris—Lecar (ML) model. In the stochastic ML model, noise-induced transitions between the coexisting regimes formed an on-off firing pattern, which closely matched that observed in the experiment. In addition, noise-induced exponential change in the escape rate from the focus, and noise-induced coherence resonance were identified. The distinctions between the on-off firing pattern and stochastic firing patterns generated near three other types of bifurcations of equilibrium points, as well as other viewpoints on the dynamics of on-off firing pattern, are discussed. The results not only identify the on-off firing pattern as noise-induced stochastic firing pattern near a sub-critical Hopf bifurcation point, but also offer practical indicators to discriminate bifurcation types and neural excitability types.

Suggested Citation

  • Gu Huaguang & Zhao Zhiguo & Jia Bing & Chen Shenggen, 2015. "Dynamics of On-Off Neural Firing Patterns and Stochastic Effects near a Sub-Critical Hopf Bifurcation," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-29, April.
  • Handle: RePEc:plo:pone00:0121028
    DOI: 10.1371/journal.pone.0121028
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121028
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0121028&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0121028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua H Goldwyn & Eric Shea-Brown, 2011. "The What and Where of Adding Channel Noise to the Hodgkin-Huxley Equations," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Kyoung Kim & Eduardo D Sontag, 2017. "Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-24, June.
    2. Ramírez-Piscina, L. & Sancho, J.M., 2018. "Periodic spiking by a pair of ionic channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 345-354.
    3. Susanne Ditlevsen & Adeline Samson, 2019. "Hypoelliptic diffusions: filtering and inference from complete and partial observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 361-384, April.
    4. Yu, Haitao & Galán, Roberto F. & Wang, Jiang & Cao, Yibin & Liu, Jing, 2017. "Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 263-275.
    5. Tuckwell, Henry C. & Jost, Jürgen, 2012. "Analysis of inverse stochastic resonance and the long-term firing of Hodgkin–Huxley neurons with Gaussian white noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5311-5325.
    6. Quentin Clairon & Adeline Samson, 2022. "Optimal control for parameter estimation in partially observed hypoelliptic stochastic differential equations," Computational Statistics, Springer, vol. 37(5), pages 2471-2491, November.
    7. I.B., Tagne nkounga & F.M., Moukam kakmeni & R., Yamapi, 2022. "Birhythmic oscillations and global stability analysis of a conductance-based neuronal model under ion channel fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Wang, Jia-Zeng & Ma, Shu & Ji, Yu & Sun, Qi, 2023. "Response to multiplicative noise: The cross-spectrum of membrane voltage fluctuation and voltage-independent conductance noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    9. Bendahmane, M. & Karlsen, K.H., 2019. "Stochastically forced cardiac bidomain model," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5312-5363.
    10. Nkounga, I.B. Tagne & Xia, Yibo & Yanchuk, Serhiy & Yamapi, R. & Kurths, Jürgen, 2023. "Generalized FitzHugh–Nagumo model with tristable dynamics: Deterministic and stochastic bifurcations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0121028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.