IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0116262.html
   My bibliography  Save this article

Data Mining Strategies to Improve Multiplex Microbead Immunoassay Tolerance in a Mouse Model of Infectious Diseases

Author

Listed:
  • Akshay Mani
  • Resmi Ravindran
  • Soujanya Mannepalli
  • Daniel Vang
  • Paul A Luciw
  • Michael Hogarth
  • Imran H Khan
  • Viswanathan V Krishnan

Abstract

Multiplex methodologies, especially those with high-throughput capabilities generate large volumes of data. Accumulation of such data (e.g., genomics, proteomics, metabolomics etc.) is fast becoming more common and thus requires the development and implementation of effective data mining strategies designed for biological and clinical applications. Multiplex microbead immunoassay (MMIA), on xMAP or MagPix platform (Luminex), which is amenable to automation, offers a major advantage over conventional methods such as Western blot or ELISA, for increasing the efficiencies in serodiagnosis of infectious diseases. MMIA allows detection of antibodies and/or antigens efficiently for a wide range of infectious agents simultaneously in host blood samples, in one reaction vessel. In the process, MMIA generates large volumes of data. In this report we demonstrate the application of data mining tools on how the inherent large volume data can improve the assay tolerance (measured in terms of sensitivity and specificity) by analysis of experimental data accumulated over a span of two years. The combination of prior knowledge with machine learning tools provides an efficient approach to improve the diagnostic power of the assay in a continuous basis. Furthermore, this study provides an in-depth knowledge base to study pathological trends of infectious agents in mouse colonies on a multivariate scale. Data mining techniques using serodetection of infections in mice, developed in this study, can be used as a general model for more complex applications in epidemiology and clinical translational research.

Suggested Citation

  • Akshay Mani & Resmi Ravindran & Soujanya Mannepalli & Daniel Vang & Paul A Luciw & Michael Hogarth & Imran H Khan & Viswanathan V Krishnan, 2015. "Data Mining Strategies to Improve Multiplex Microbead Immunoassay Tolerance in a Mouse Model of Infectious Diseases," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-19, January.
  • Handle: RePEc:plo:pone00:0116262
    DOI: 10.1371/journal.pone.0116262
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116262
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0116262&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0116262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vivien Marx, 2013. "The big challenges of big data," Nature, Nature, vol. 498(7453), pages 255-260, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Zhu & Xiantao Liu & Sha He & Jun Shi & Ming Pang, 2015. "Keywords co-occurrence mapping knowledge domain research base on the theory of Big Data in oil and gas industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 249-260, October.
    2. Zhang, Yi & Huang, Ying & Porter, Alan L. & Zhang, Guangquan & Lu, Jie, 2019. "Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 795-807.
    3. Stefano Bianchini & Moritz Müller & Pierre Pelletier, 2022. "Artificial intelligence in science: An emerging general method of invention," Post-Print hal-03958025, HAL.
    4. Jun Feng & Zhenting Li & Shizhen Zhang & Chun Bao & Jingxian Fang & Yun Yin & Bolei Chen & Lei Pan & Bing Wang & Yu Zheng, 2023. "A Microimage-Processing-Based Technique for Detecting Qualitative and Quantitative Characteristics of Plant Cells," Agriculture, MDPI, vol. 13(9), pages 1-16, September.
    5. Tang, Ming & Liao, Huchang, 2021. "From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey," Omega, Elsevier, vol. 100(C).
    6. Janssen, Marijn & van der Voort, Haiko & Wahyudi, Agung, 2017. "Factors influencing big data decision-making quality," Journal of Business Research, Elsevier, vol. 70(C), pages 338-345.
    7. Haitham Nobanee & Mehroz Nida Dilshad & Mona Al Dhanhani & Maitha Al Neyadi & Sultan Al Qubaisi & Saeed Al Shamsi, 2021. "Big Data Applications the Banking Sector: A Bibliometric Analysis Approach," SAGE Open, , vol. 11(4), pages 21582440211, December.
    8. Reza Farrahi Moghaddam & Fereydoun Farrahi Moghaddam & Mohamed Cheriet, 2014. "A Multi-Entity Input Output (MEIO) Approach to Sustainability - Water-Energy-GHG (WEG) Footprint Statements in Use Cases from Auto and Telco Industries," Papers 1404.6227, arXiv.org, revised Apr 2014.
    9. Yoshiyuki Ogata & Kazuto Mannen & Yasuto Kotani & Naohiro Kimura & Nozomu Sakurai & Daisuke Shibata & Hideyuki Suzuki, 2018. "ConfeitoGUI: A toolkit for size-sensitive community detection from a correlation network," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
    10. S. Vijayakumar Bharathi, 2017. "Prioritizing and Ranking the Big Data Information Security Risk Spectrum," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 183-201, September.
    11. Jonathan E Butner & Ascher K Munion & Brian R W Baucom & Alexander Wong, 2019. "Ghost hunting in the nonlinear dynamic machine," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-21, December.
    12. Subhroshekhar Ghosh & Soumendu Sundar Mukherjee, 2022. "Learning with latent group sparsity via heat flow dynamics on networks," Papers 2201.08326, arXiv.org.
    13. J. Lars Kirkby & Dang H. Nguyen & Duy Nguyen & Nhu N. Nguyen, 2022. "Inversion-free subsampling Newton’s method for large sample logistic regression," Statistical Papers, Springer, vol. 63(3), pages 943-963, June.
    14. Zbysław Dobrowolski, 2021. "Internet of Things and Other E-Solutions in Supply Chain Management May Generate Threats in the Energy Sector—The Quest for Preventive Measures," Energies, MDPI, vol. 14(17), pages 1-11, August.
    15. Dawen Xia & Xiaonan Lu & Huaqing Li & Wendong Wang & Yantao Li & Zili Zhang, 2018. "A MapReduce-Based Parallel Frequent Pattern Growth Algorithm for Spatiotemporal Association Analysis of Mobile Trajectory Big Data," Complexity, Hindawi, vol. 2018, pages 1-16, January.
    16. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2019. "Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
    17. Lu Jiang & Xinyu Kang & Shan Huang & Bo Yang, 2022. "A refinement strategy for identification of scientific software from bioinformatics publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3293-3316, June.
    18. Gamermann, Daniel & Antunes, Felipe Leite, 2018. "Statistical analysis of Brazilian electoral campaigns via Benford’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 171-188.
    19. Alberto Fernández & Sara Río & Abdullah Bawakid & Francisco Herrera, 2017. "Fuzzy rule based classification systems for big data with MapReduce: granularity analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 711-730, December.
    20. Felwa Abukhodair & Wafaa Alsaggaf & Amani Tariq Jamal & Sayed Abdel-Khalek & Romany F. Mansour, 2021. "An Intelligent Metaheuristic Binary Pigeon Optimization-Based Feature Selection and Big Data Classification in a MapReduce Environment," Mathematics, MDPI, vol. 9(20), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0116262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.