IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0108768.html
   My bibliography  Save this article

Selection Pressure in Alternative Reading Frames

Author

Listed:
  • Katharina Mir
  • Steffen Schober

Abstract

Overlapping genes are two protein-coding sequences sharing a significant part of the same DNA locus in different reading frames. Although in recent times an increasing number of examples have been found in bacteria the underlying mechanisms of their evolution are unknown. In this work we explore how selective pressure in a protein-coding sequence influences its overlapping genes in alternative reading frames. We model evolution using a time-continuous Markov process and derive the corresponding model for the remaining frames to quantify selection pressure and genetic noise. Our findings lead to the presumption that, once information is embedded in the reverse reading frame −2 (relative to the mother gene in +1) purifying selection in the protein-coding reading frame automatically protects the sequences in both frames. We also found that this coincides with the fact that the genetic noise measured using the conditional entropy is minimal in frame −2 under selection in the coding frame.

Suggested Citation

  • Katharina Mir & Steffen Schober, 2014. "Selection Pressure in Alternative Reading Frames," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
  • Handle: RePEc:plo:pone00:0108768
    DOI: 10.1371/journal.pone.0108768
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108768
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0108768&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0108768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shibu Yooseph & Granger Sutton & Douglas B Rusch & Aaron L Halpern & Shannon J Williamson & Karin Remington & Jonathan A Eisen & Karla B Heidelberg & Gerard Manning & Weizhong Li & Lukasz Jaroszewski , 2007. "The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families," PLOS Biology, Public Library of Science, vol. 5(3), pages 1-35, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bharat Ravi Iyengar & Anna Grandchamp & Erich Bornberg-Bauer, 2024. "How antisense transcripts can evolve to encode novel proteins," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natarajan Kannan & Susan S Taylor & Yufeng Zhai & J Craig Venter & Gerard Manning, 2007. "Structural and Functional Diversity of the Microbial Kinome," PLOS Biology, Public Library of Science, vol. 5(3), pages 1-12, March.
    2. Meishun Yu & Menghui Zhang & Runying Zeng & Ruolin Cheng & Rui Zhang & Yanping Hou & Fangfang Kuang & Xuejin Feng & Xiyang Dong & Yinfang Li & Zongze Shao & Min Jin, 2024. "Diversity and potential host-interactions of viruses inhabiting deep-sea seamount sediments," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Yael Baran & Eran Halperin, 2012. "Joint Analysis of Multiple Metagenomic Samples," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-11, February.
    4. Morgan N Price & Paramvir S Dehal & Adam P Arkin, 2008. "FastBLAST: Homology Relationships for Millions of Proteins," PLOS ONE, Public Library of Science, vol. 3(10), pages 1-8, October.
    5. Armstrong, Claire W. & Foley, Naomi S. & Tinch, Rob & van den Hove, Sybille, 2012. "Services from the deep: Steps towards valuation of deep sea goods and services," Ecosystem Services, Elsevier, vol. 2(C), pages 2-13.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0108768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.