IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0103747.html
   My bibliography  Save this article

Association Analysis of Stem Rust Resistance in U.S. Winter Wheat

Author

Listed:
  • Dadong Zhang
  • Robert L Bowden
  • Jianming Yu
  • Brett F Carver
  • Guihua Bai

Abstract

Stem rust has become a renewed threat to global wheat production after the emergence and spread of race TTKSK (also known as Ug99) and related races from Africa. To elucidate U.S. winter wheat resistance genes to stem rust, association mapping was conducted using a panel of 137 lines from cooperative U.S. winter wheat nurseries from 2008 and simple sequence repeat (SSR) and sequence tagged site (STS) markers across the wheat genome. Seedling infection types were evaluated in a greenhouse experiment using six U.S. stem rust races (QFCSC, QTHJC, RCRSC, RKQQC, TPMKC and TTTTF) and TTKSK, and adult plant responses to bulked U.S. races were evaluated in a field experiment. A linearization algorithm was used to convert the qualitative Stakman scale seedling infection types for quantitative analysis. Association mapping successfully detected six known stem rust seedling resistance genes in U.S. winter wheat lines with frequencies: Sr6 (12%), Sr24 (9%), Sr31 (15%), Sr36 (9%), Sr38 (19%), and Sr1RSAmigo (8%). Adult plant resistance gene Sr2 was present in 4% of lines. SrTmp was postulated to be present in several hard winter wheat lines, but the frequency could not be accurately determined. Sr38 was the most prevalent Sr gene in both hard and soft winter wheat and was the most effective Sr gene in the adult plant field test. Resistance to TTKSK was associated with nine markers on chromosome 2B that were in linkage disequilibrium and all of the resistance was attributed to the Triticum timopheevii chromosome segment carrying Sr36. Potential novel rust resistance alleles were associated with markers Xwmc326-203 on 3BL, Xgwm160-195 and Xwmc313-225 on 4AL near Sr7, Xgwm495-182 on 4BL, Xwmc622-147 and Xgwm624-146 on 4DL, and Xgwm334-123 on 6AS near Sr8. Xwmc326-203 was associated with adult plant resistance to bulked U.S. races and Xgwm495-182 was associated with seedling resistance to TTKSK.

Suggested Citation

  • Dadong Zhang & Robert L Bowden & Jianming Yu & Brett F Carver & Guihua Bai, 2014. "Association Analysis of Stem Rust Resistance in U.S. Winter Wheat," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
  • Handle: RePEc:plo:pone00:0103747
    DOI: 10.1371/journal.pone.0103747
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0103747
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0103747&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0103747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guifang Lin & Hui Chen & Bin Tian & Sunish K. Sehgal & Lovepreet Singh & Jingzhong Xie & Nidhi Rawat & Philomin Juliana & Narinder Singh & Sandesh Shrestha & Duane L. Wilson & Hannah Shult & Hyeonju L, 2022. "Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0103747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.