Amount of Information Needed for Model Choice in Approximate Bayesian Computation
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0099581
Download full text from publisher
References listed on IDEAS
- Prangle Dennis & Fearnhead Paul & Cox Murray P. & Biggs Patrick J. & French Nigel P., 2014. "Semi-automatic selection of summary statistics for ABC model choice," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 67-82, February.
- Paul Fearnhead & Dennis Prangle, 2012. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 419-474, June.
- Joyce Paul & Marjoram Paul, 2008. "Approximately Sufficient Statistics and Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-18, August.
- repec:dau:papers:123456789/6334 is not listed on IDEAS
- Nunes Matthew A & Balding David J, 2010. "On Optimal Selection of Summary Statistics for Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-16, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Baey, Charlotte & Smith, Henrik G. & Rundlöf, Maj & Olsson, Ola & Clough, Yann & Sahlin, Ullrika, 2023. "Calibration of a bumble bee foraging model using Approximate Bayesian Computation," Ecological Modelling, Elsevier, vol. 477(C).
- Jonathan U Harrison & Ruth E Baker, 2020. "An automatic adaptive method to combine summary statistics in approximate Bayesian computation," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
- Prangle Dennis & Fearnhead Paul & Cox Murray P. & Biggs Patrick J. & French Nigel P., 2014. "Semi-automatic selection of summary statistics for ABC model choice," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 67-82, February.
- Buzbas, Erkan O. & Rosenberg, Noah A., 2015. "AABC: Approximate approximate Bayesian computation for inference in population-genetic models," Theoretical Population Biology, Elsevier, vol. 99(C), pages 31-42.
- Soubeyrand Samuel & Carpentier Florence & Guiton François & Klein Etienne K., 2013. "Approximate Bayesian computation with functional statistics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 17-37, March.
- Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
- Creel, Michael & Kristensen, Dennis, 2016.
"On selection of statistics for approximate Bayesian computing (or the method of simulated moments),"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 99-114.
- Michael Creel & Dennis Kristensen, 2015. "On Selection of Statistics for Approximate Bayesian Computing or the Method of Simulated Moments," UFAE and IAE Working Papers 950.15, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC), revised 27 Feb 2015.
- Wilkinson Richard David, 2013. "Approximate Bayesian computation (ABC) gives exact results under the assumption of model error," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(2), pages 129-141, May.
- Nakagome Shigeki & Fukumizu Kenji & Mano Shuhei, 2013. "Kernel approximate Bayesian computation in population genetic inferences," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 667-678, December.
- Soubeyrand, Samuel & Haon-Lasportes, Emilie, 2015. "Weak convergence of posteriors conditional on maximum pseudo-likelihood estimates and implications in ABC," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 84-92.
- Silk Daniel & Filippi Sarah & Stumpf Michael P. H., 2013. "Optimizing threshold-schedules for sequential approximate Bayesian computation: applications to molecular systems," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 603-618, October.
- D.T. Frazier & G.M. Martin & C.P. Robert & J. Rousseau, 2016. "Asymptotic Properties of Approximate Bayesian Computation," Monash Econometrics and Business Statistics Working Papers 18/16, Monash University, Department of Econometrics and Business Statistics.
- Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
- Florian Maire & Nial Friel & Pierre ALQUIER, 2017. "Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets," Working Papers 2017-40, Center for Research in Economics and Statistics.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
- Christopher C. Drovandi & Anthony N. Pettitt, 2013. "Bayesian Experimental Design for Models with Intractable Likelihoods," Biometrics, The International Biometric Society, vol. 69(4), pages 937-948, December.
- Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019.
"Approximate Bayesian forecasting,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
- David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Brendan P.M. McCabe, 2018. "Approximate Bayesian forecasting," Monash Econometrics and Business Statistics Working Papers 2/18, Monash University, Department of Econometrics and Business Statistics.
- Creel, Michael & Kristensen, Dennis, 2015.
"ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models,"
Journal of Empirical Finance, Elsevier, vol. 31(C), pages 85-108.
- Michael Creel & Dennis Kristensen, 2014. "ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models," CREATES Research Papers 2014-30, Department of Economics and Business Economics, Aarhus University.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0099581. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.