IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0094307.html
   My bibliography  Save this article

Potential for Pancreatic Maturation of Differentiating Human Embryonic Stem Cells Is Sensitive to the Specific Pathway of Definitive Endoderm Commitment

Author

Listed:
  • Maria Jaramillo
  • Shibin Mathew
  • Keith Task
  • Sierra Barner
  • Ipsita Banerjee

Abstract

This study provides a detailed experimental and mathematical analysis of the impact of the initial pathway of definitive endoderm (DE) induction on later stages of pancreatic maturation. Human embryonic stem cells (hESCs) were induced to insulin-producing cells following a directed-differentiation approach. DE was induced following four alternative pathway modulations. DE derivatives obtained from these alternate pathways were subjected to pancreatic progenitor (PP) induction and maturation and analyzed at each stage. Results indicate that late stage maturation is influenced by the initial pathway of DE commitment. Detailed quantitative analysis revealed WNT3A and FGF2 induced DE cells showed highest expression of insulin, are closely aligned in gene expression patterning and have a closer resemblance to pancreatic organogenesis. Conversely, BMP4 at DE induction gave most divergent differentiation dynamics with lowest insulin upregulation, but highest glucagon upregulation. Additionally, we have concluded that early analysis of PP markers is indicative of its potential for pancreatic maturation.

Suggested Citation

  • Maria Jaramillo & Shibin Mathew & Keith Task & Sierra Barner & Ipsita Banerjee, 2014. "Potential for Pancreatic Maturation of Differentiating Human Embryonic Stem Cells Is Sensitive to the Specific Pathway of Definitive Endoderm Commitment," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.
  • Handle: RePEc:plo:pone00:0094307
    DOI: 10.1371/journal.pone.0094307
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094307
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0094307&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0094307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Beatriz Sosa-Pineda & Kamal Chowdhury & Miguel Torres & Guillermo Oliver & Peter Gruss, 1997. "The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas," Nature, Nature, vol. 386(6623), pages 399-402, March.
    2. Keith Task & Maria Jaramillo & Ipsita Banerjee, 2012. "Population Based Model of Human Embryonic Stem Cell (hESC) Differentiation during Endoderm Induction," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wladimir J Alonso & Maia A Rabaa & Ricardo Giglio & Mark A Miller & Cynthia Schuck-Paim, 2015. "Modeling the Impact of Alternative Immunization Strategies: Using Matrices as Memory Lanes," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.
    2. Jianfang Li & Xinwei Wu & Jie Ke & Minjung Lee & Qingping Lan & Jia Li & Jianxiu Yu & Yun Huang & De-Qiang Sun & Ruiyu Xie, 2022. "TET1 dioxygenase is required for FOXA2-associated chromatin remodeling in pancreatic beta-cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0094307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.