IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0032975.html
   My bibliography  Save this article

Population Based Model of Human Embryonic Stem Cell (hESC) Differentiation during Endoderm Induction

Author

Listed:
  • Keith Task
  • Maria Jaramillo
  • Ipsita Banerjee

Abstract

The mechanisms by which human embryonic stem cells (hESC) differentiate to endodermal lineage have not been extensively studied. Mathematical models can aid in the identification of mechanistic information. In this work we use a population-based modeling approach to understand the mechanism of endoderm induction in hESC, performed experimentally with exposure to Activin A and Activin A supplemented with growth factors (basic fibroblast growth factor (FGF2) and bone morphogenetic protein 4 (BMP4)). The differentiating cell population is analyzed daily for cellular growth, cell death, and expression of the endoderm proteins Sox17 and CXCR4. The stochastic model starts with a population of undifferentiated cells, wherefrom it evolves in time by assigning each cell a propensity to proliferate, die and differentiate using certain user defined rules. Twelve alternate mechanisms which might describe the observed dynamics were simulated, and an ensemble parameter estimation was performed on each mechanism. A comparison of the quality of agreement of experimental data with simulations for several competing mechanisms led to the identification of one which adequately describes the observed dynamics under both induction conditions. The results indicate that hESC commitment to endoderm occurs through an intermediate mesendoderm germ layer which further differentiates into mesoderm and endoderm, and that during induction proliferation of the endoderm germ layer is promoted. Furthermore, our model suggests that CXCR4 is expressed in mesendoderm and endoderm, but is not expressed in mesoderm. Comparison between the two induction conditions indicates that supplementing FGF2 and BMP4 to Activin A enhances the kinetics of differentiation than Activin A alone. This mechanistic information can aid in the derivation of functional, mature cells from their progenitors. While applied to initial endoderm commitment of hESC, the model is general enough to be applicable either to a system of adult stem cells or later stages of ESC differentiation.

Suggested Citation

  • Keith Task & Maria Jaramillo & Ipsita Banerjee, 2012. "Population Based Model of Human Embryonic Stem Cell (hESC) Differentiation during Endoderm Induction," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-10, March.
  • Handle: RePEc:plo:pone00:0032975
    DOI: 10.1371/journal.pone.0032975
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032975
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0032975&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0032975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Jaramillo & Shibin Mathew & Keith Task & Sierra Barner & Ipsita Banerjee, 2014. "Potential for Pancreatic Maturation of Differentiating Human Embryonic Stem Cells Is Sensitive to the Specific Pathway of Definitive Endoderm Commitment," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.
    2. Wladimir J Alonso & Maia A Rabaa & Ricardo Giglio & Mark A Miller & Cynthia Schuck-Paim, 2015. "Modeling the Impact of Alternative Immunization Strategies: Using Matrices as Memory Lanes," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-11, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0032975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.