IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0093090.html
   My bibliography  Save this article

Avalanches in Self-Organized Critical Neural Networks: A Minimal Model for the Neural SOC Universality Class

Author

Listed:
  • Matthias Rybarsch
  • Stefan Bornholdt

Abstract

The brain keeps its overall dynamics in a corridor of intermediate activity and it has been a long standing question what possible mechanism could achieve this task. Mechanisms from the field of statistical physics have long been suggesting that this homeostasis of brain activity could occur even without a central regulator, via self-organization on the level of neurons and their interactions, alone. Such physical mechanisms from the class of self-organized criticality exhibit characteristic dynamical signatures, similar to seismic activity related to earthquakes. Measurements of cortex rest activity showed first signs of dynamical signatures potentially pointing to self-organized critical dynamics in the brain. Indeed, recent more accurate measurements allowed for a detailed comparison with scaling theory of non-equilibrium critical phenomena, proving the existence of criticality in cortex dynamics. We here compare this new evaluation of cortex activity data to the predictions of the earliest physics spin model of self-organized critical neural networks. We find that the model matches with the recent experimental data and its interpretation in terms of dynamical signatures for criticality in the brain. The combination of signatures for criticality, power law distributions of avalanche sizes and durations, as well as a specific scaling relationship between anomalous exponents, defines a universality class characteristic of the particular critical phenomenon observed in the neural experiments. Thus the model is a candidate for a minimal model of a self-organized critical adaptive network for the universality class of neural criticality. As a prototype model, it provides the background for models that may include more biological details, yet share the same universality class characteristic of the homeostasis of activity in the brain.

Suggested Citation

  • Matthias Rybarsch & Stefan Bornholdt, 2014. "Avalanches in Self-Organized Critical Neural Networks: A Minimal Model for the Neural SOC Universality Class," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
  • Handle: RePEc:plo:pone00:0093090
    DOI: 10.1371/journal.pone.0093090
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093090
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0093090&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0093090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng, Jiayi & Beggs, John M., 2013. "Attaining and maintaining criticality in a neuronal network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1611-1620.
    2. Alberto Mazzoni & Frédéric D Broccard & Elizabeth Garcia-Perez & Paolo Bonifazi & Maria Elisabetta Ruaro & Vincent Torre, 2007. "On the Dynamics of the Spontaneous Activity in Neuronal Networks," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, JinHao & Ding, Yiming & Di, Zengru & Wang, DaHui, 2024. "“All-or-none” dynamics and local-range dominated interaction leading to criticality in neural systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bershadskii, A. & Ikegaya, Y., 2011. "Chaotic neuron clock," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 342-347.
    2. Bashkirtseva, Irina A. & Ryashko, Lev B. & Pisarchik, Alexander N., 2020. "Ring of map-based neural oscillators: From order to chaos and back," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Simone Orcioni & Alessandra Paffi & Francesca Apollonio & Micaela Liberti, 2020. "Revealing Spectrum Features of Stochastic Neuron Spike Trains," Mathematics, MDPI, vol. 8(6), pages 1-13, June.
    4. Marc Benayoun & Jack D Cowan & Wim van Drongelen & Edward Wallace, 2010. "Avalanches in a Stochastic Model of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-13, July.
    5. Sinisa Pajevic & Dietmar Plenz, 2009. "Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-20, January.
    6. Protachevicz, Paulo R. & Batista, Antonio M. & Caldas, Iberê L. & Baptista, Murilo S., 2024. "Analytical solutions for the short-term plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Guido Gigante & Gustavo Deco & Shimon Marom & Paolo Del Giudice, 2015. "Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-23, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0093090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.