IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0093066.html
   My bibliography  Save this article

Constitutive Model of Single Root System’s Resistance to Tensile Stress - Taking Pinus tabulaeformis, Betula platyphylla, Quercus mongolica and Larix gmelinii as Experimental Objects

Author

Listed:
  • Lihua Chen
  • Pinghua Wang
  • Yuanjun Yang
  • Jia He

Abstract

A constitutive model for the stress-strain relationship of single forest root system was developed in order to provide theoretical foundations for the mechanisms of soil-reinforcement by root system and offer a reliable basis for the analysis of root tensile strength character. This study started a general form of linear and non-linear stress-strain relation that was mathematically defined by four boundary conditions observed in typical tensile tests of single roots. The parameters of the model were determined by experiment data and had definite physical meaning. The model was verified by experiment data, which showed that the calculated values were in good agreement with the experimental single root tensile test results. The constitutive model was validated and found to be feasible for modeling single root tensile stress.

Suggested Citation

  • Lihua Chen & Pinghua Wang & Yuanjun Yang & Jia He, 2014. "Constitutive Model of Single Root System’s Resistance to Tensile Stress - Taking Pinus tabulaeformis, Betula platyphylla, Quercus mongolica and Larix gmelinii as Experimental Objects," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
  • Handle: RePEc:plo:pone00:0093066
    DOI: 10.1371/journal.pone.0093066
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093066
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0093066&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0093066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio Cislaghi, 2021. "Exploring the variability in elastic properties of roots in Alpine tree species," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(7), pages 338-356.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0093066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.