IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0091886.html
   My bibliography  Save this article

Patterns of Gene Expression in Peripheral Blood Mononuclear Cells and Outcomes from Patients with Sepsis Secondary to Community Acquired Pneumonia

Author

Listed:
  • Patricia Severino
  • Eliézer Silva
  • Giovana Lotici Baggio-Zappia
  • Milena Karina Coló Brunialti
  • Laura Alejandra Nucci
  • Otelo Rigato Jr.
  • Ismael Dale Cotrim Guerreiro da Silva
  • Flávia Ribeiro Machado
  • Reinaldo Salomao

Abstract

Mechanisms governing the inflammatory response during sepsis have been shown to be complex, involving cross-talk between diverse signaling pathways. Current knowledge regarding the mechanisms underlying sepsis provides an incomplete picture of the syndrome, justifying additional efforts to understand this condition. Microarray-based expression profiling is a powerful approach for the investigation of complex clinical conditions such as sepsis. In this study, we investigate whole-genome expression profiles in mononuclear cells from survivors (n = 5) and non-survivors (n = 5) of sepsis. To circumvent the heterogeneity of septic patients, only patients admitted with sepsis caused by community-acquired pneumonia were included. Blood samples were collected at the time of sepsis diagnosis and seven days later to evaluate the role of biological processes or genes possibly involved in patient recovery. Principal Components Analysis (PCA) profiling discriminated between patients with early sepsis and healthy individuals. Genes with differential expression were grouped according to Gene Ontology, and most genes related to immune defense were up-regulated in septic patients. Additionally, PCA in the early stage was able to distinguish survivors from non-survivors. Differences in oxidative phosphorylation seem to be associated with clinical outcome because significant differences in the expression profile of genes related to mitochondrial electron transport chain (ETC) I–V were observed between survivors and non-survivors at the time of patient enrollment. Global gene expression profiles after seven days of sepsis progression seem to reproduce, to a certain extent, patterns collected at the time of diagnosis. Gene expression profiles comparing admission and follow-up samples differed between survivors and non-survivors, with decreased expression of genes related to immune functions in non-survivors. In conclusion, genes related to host defense and inflammatory response ontology were up-regulated during sepsis, consistent with the need for a host response to infection, and the sustainability of their expression in follow-up samples was associated with outcomes.

Suggested Citation

  • Patricia Severino & Eliézer Silva & Giovana Lotici Baggio-Zappia & Milena Karina Coló Brunialti & Laura Alejandra Nucci & Otelo Rigato Jr. & Ismael Dale Cotrim Guerreiro da Silva & Flávia Ribeiro Mach, 2014. "Patterns of Gene Expression in Peripheral Blood Mononuclear Cells and Outcomes from Patients with Sepsis Secondary to Community Acquired Pneumonia," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-8, March.
  • Handle: RePEc:plo:pone00:0091886
    DOI: 10.1371/journal.pone.0091886
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0091886
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0091886&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0091886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simmie L. Foster & Diana C. Hargreaves & Ruslan Medzhitov, 2007. "Gene-specific control of inflammation by TLR-induced chromatin modifications," Nature, Nature, vol. 447(7147), pages 972-978, June.
    2. Steve E. Calvano & Wenzhong Xiao & Daniel R. Richards & Ramon M. Felciano & Henry V. Baker & Raymond J. Cho & Richard O. Chen & Bernard H. Brownstein & J. Perren Cobb & S. Kevin Tschoeke & Carol Mille, 2005. "A network-based analysis of systemic inflammation in humans," Nature, Nature, vol. 437(7061), pages 1032-1037, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junhee Seok & Ronald W Davis & Wenzhong Xiao, 2015. "A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    2. Jonathan E McDunn & Kareem D Husain & Ashoka D Polpitiya & Anton Burykin & Jianhua Ruan & Qing Li & William Schierding & Nan Lin & David Dixon & Weixiong Zhang & Craig M Coopersmith & W Michael Dunne , 2008. "Plasticity of the Systemic Inflammatory Response to Acute Infection during Critical Illness: Development of the Riboleukogram," PLOS ONE, Public Library of Science, vol. 3(2), pages 1-14, February.
    3. Yau-Hua Yu & Hsu-Ko Kuo & Kuo-Wei Chang, 2008. "The Evolving Transcriptome of Head and Neck Squamous Cell Carcinoma: A Systematic Review," PLOS ONE, Public Library of Science, vol. 3(9), pages 1-11, September.
    4. Yoram Vodovotz & Marie Csete & John Bartels & Steven Chang & Gary An, 2008. "Translational Systems Biology of Inflammation," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-6, April.
    5. Dolores Wolfram & Ravi Starzl & Hubert Hackl & Derek Barclay & Theresa Hautz & Bettina Zelger & Gerald Brandacher & W P Andrew Lee & Nadine Eberhart & Yoram Vodovotz & Johann Pratschke & Gerhard Piere, 2014. "Insights from Computational Modeling in Inflammation and Acute Rejection in Limb Transplantation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    6. Raphael Watt & Kimberley Parkin & David Martino, 2020. "The Potential Effects of Short-Chain Fatty Acids on the Epigenetic Regulation of Innate Immune Memory," Challenges, MDPI, vol. 11(2), pages 1-16, October.
    7. Herman A van Wietmarschen & Theo H Reijmers & Anita J van der Kooij & Jan Schroën & Heng Wei & Thomas Hankemeier & Jacqueline J Meulman & Jan van der Greef, 2011. "Sub-Typing of Rheumatic Diseases Based on a Systems Diagnosis Questionnaire," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-10, September.
    8. Kakajan Komurov & Michael A White & Prahlad T Ram, 2010. "Use of Data-Biased Random Walks on Graphs for the Retrieval of Context-Specific Networks from Genomic Data," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-10, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0091886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.