IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0087619.html
   My bibliography  Save this article

Theory of Mind: Did Evolution Fool Us?

Author

Listed:
  • Marie Devaine
  • Guillaume Hollard
  • Jean Daunizeau

Abstract

Theory of Mind (ToM) is the ability to attribute mental states (e.g., beliefs and desires) to other people in order to understand and predict their behaviour. If others are rewarded to compete or cooperate with you, then what they will do depends upon what they believe about you. This is the reason why social interaction induces recursive ToM, of the sort “I think that you think that I think, etc.”. Critically, recursion is the common notion behind the definition of sophistication of human language, strategic thinking in games, and, arguably, ToM. Although sophisticated ToM is believed to have high adaptive fitness, broad experimental evidence from behavioural economics, experimental psychology and linguistics point towards limited recursivity in representing other’s beliefs. In this work, we test whether such apparent limitation may not in fact be proven to be adaptive, i.e. optimal in an evolutionary sense. First, we propose a meta-Bayesian approach that can predict the behaviour of ToM sophistication phenotypes who engage in social interactions. Second, we measure their adaptive fitness using evolutionary game theory. Our main contribution is to show that one does not have to appeal to biological costs to explain our limited ToM sophistication. In fact, the evolutionary cost/benefit ratio of ToM sophistication is non trivial. This is partly because an informational cost prevents highly sophisticated ToM phenotypes to fully exploit less sophisticated ones (in a competitive context). In addition, cooperation surprisingly favours lower levels of ToM sophistication. Taken together, these quantitative corollaries of the “social Bayesian brain” hypothesis provide an evolutionary account for both the limitation of ToM sophistication in humans as well as the persistence of low ToM sophistication levels.

Suggested Citation

  • Marie Devaine & Guillaume Hollard & Jean Daunizeau, 2014. "Theory of Mind: Did Evolution Fool Us?," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
  • Handle: RePEc:plo:pone00:0087619
    DOI: 10.1371/journal.pone.0087619
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087619
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0087619&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0087619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie Devaine & Guillaume Hollard & Jean Daunizeau, 2014. "The Social Bayesian Brain: Does Mentalizing Make a Difference When We Learn?," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-14, December.
    2. repec:cup:judgdm:v:13:y:2018:i:1:p:79-98 is not listed on IDEAS
    3. Rineke Verbrugge & Ben Meijering & Stefan Wierda & Hedderik van Rijn & Niels Taatgen, 2018. "Stepwise training supports strategic second-order theory of mind in turn-taking games," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 13(1), pages 79-98, January.
    4. W Chen & Y Chen & D Levine, 2015. "A Unifying Learning Framework for Building Artificial Game-Playing Agents," Levine's Working Paper Archive 786969000000001002, David K. Levine.
    5. Ding, Zhen-Wei & Zheng, Guo-Zhong & Cai, Chao-Ran & Cai, Wei-Ran & Chen, Li & Zhang, Ji-Qiang & Wang, Xu-Ming, 2023. "Emergence of cooperation in two-agent repeated games with reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Andreea O Diaconescu & Christoph Mathys & Lilian A E Weber & Jean Daunizeau & Lars Kasper & Ekaterina I Lomakina & Ernst Fehr & Klaas E Stephan, 2014. "Inferring on the Intentions of Others by Hierarchical Bayesian Learning," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-19, September.
    7. Anton M Unakafov & Thomas Schultze & Alexander Gail & Sebastian Moeller & Igor Kagan & Stephan Eule & Fred Wolf, 2020. "Emergence and suppression of cooperation by action visibility in transparent games," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-32, January.
    8. Wu, Bin & Cheng, Jing & Qi, Yuqing, 2020. "Tripartite evolutionary game analysis for “Deceive acquaintances” behavior of e-commerce platforms in cooperative supervision," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0087619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.