IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0086850.html
   My bibliography  Save this article

Transcranial Direct Current Stimulation of Right Dorsolateral Prefrontal Cortex Does Not Affect Model-Based or Model-Free Reinforcement Learning in Humans

Author

Listed:
  • Peter Smittenaar
  • George Prichard
  • Thomas H B FitzGerald
  • Joern Diedrichsen
  • Raymond J Dolan

Abstract

There is broad consensus that the prefrontal cortex supports goal-directed, model-based decision-making. Consistent with this, we have recently shown that model-based control can be impaired through transcranial magnetic stimulation of right dorsolateral prefrontal cortex in humans. We hypothesized that an enhancement of model-based control might be achieved by anodal transcranial direct current stimulation of the same region. We tested 22 healthy adult human participants in a within-subject, double-blind design in which participants were given Active or Sham stimulation over two sessions. We show Active stimulation had no effect on model-based control or on model-free (‘habitual’) control compared to Sham stimulation. These null effects are substantiated by a power analysis, which suggests that our study had at least 60% power to detect a true effect, and by a Bayesian model comparison, which favors a model of the data that assumes stimulation had no effect over models that assume stimulation had an effect on behavioral control. Although we cannot entirely exclude more trivial explanations for our null effect, for example related to (faults in) our experimental setup, these data suggest that anodal transcranial direct current stimulation over right dorsolateral prefrontal cortex does not improve model-based control, despite existing evidence that transcranial magnetic stimulation can disrupt such control in the same brain region.

Suggested Citation

  • Peter Smittenaar & George Prichard & Thomas H B FitzGerald & Joern Diedrichsen & Raymond J Dolan, 2014. "Transcranial Direct Current Stimulation of Right Dorsolateral Prefrontal Cortex Does Not Affect Model-Based or Model-Free Reinforcement Learning in Humans," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-8, January.
  • Handle: RePEc:plo:pone00:0086850
    DOI: 10.1371/journal.pone.0086850
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086850
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0086850&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0086850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. A. Poldrack & J. Clark & E. J. Paré-Blagoev & D. Shohamy & J. Creso Moyano & C. Myers & M. A. Gluck, 2001. "Interactive memory systems in the human brain," Nature, Nature, vol. 414(6863), pages 546-550, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Miranda & W M Nishantha Malalasekera & Timothy E Behrens & Peter Dayan & Steven W Kennerley, 2020. "Combined model-free and model-sensitive reinforcement learning in non-human primates," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-25, June.
    2. Wouter Kool & Fiery A Cushman & Samuel J Gershman, 2016. "When Does Model-Based Control Pay Off?," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-34, August.
    3. Sam Ereira & Raymond J Dolan & Zeb Kurth-Nelson, 2018. "Agent-specific learning signals for self–other distinction during mentalising," PLOS Biology, Public Library of Science, vol. 16(4), pages 1-32, April.
    4. Thomas Akam & Rui Costa & Peter Dayan, 2015. "Simple Plans or Sophisticated Habits? State, Transition and Learning Interactions in the Two-Step Task," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fraser Aitken & Peter Kok, 2022. "Hippocampal representations switch from errors to predictions during acquisition of predictive associations," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Sang Wan Lee & John P O’Doherty & Shinsuke Shimojo, 2015. "Neural Computations Mediating One-Shot Learning in the Human Brain," PLOS Biology, Public Library of Science, vol. 13(4), pages 1-36, April.
    3. Geoffrey Hodgson, 2010. "Choice, habit and evolution," Journal of Evolutionary Economics, Springer, vol. 20(1), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0086850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.