IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0085139.html
   My bibliography  Save this article

Large Scale Identification and Categorization of Protein Sequences Using Structured Logistic Regression

Author

Listed:
  • Bjørn P Pedersen
  • Georgiana Ifrim
  • Poul Liboriussen
  • Kristian B Axelsen
  • Michael G Palmgren
  • Poul Nissen
  • Carsten Wiuf
  • Christian N S Pedersen

Abstract

Background: Structured Logistic Regression (SLR) is a newly developed machine learning tool first proposed in the context of text categorization. Current availability of extensive protein sequence databases calls for an automated method to reliably classify sequences and SLR seems well-suited for this task. The classification of P-type ATPases, a large family of ATP-driven membrane pumps transporting essential cations, was selected as a test-case that would generate important biological information as well as provide a proof-of-concept for the application of SLR to a large scale bioinformatics problem. Results: Using SLR, we have built classifiers to identify and automatically categorize P-type ATPases into one of 11 pre-defined classes. The SLR-classifiers are compared to a Hidden Markov Model approach and shown to be highly accurate and scalable. Representing the bulk of currently known sequences, we analysed 9.3 million sequences in the UniProtKB and attempted to classify a large number of P-type ATPases. To examine the distribution of pumps on organisms, we also applied SLR to 1,123 complete genomes from the Entrez genome database. Finally, we analysed the predicted membrane topology of the identified P-type ATPases. Conclusions: Using the SLR-based classification tool we are able to run a large scale study of P-type ATPases. This study provides proof-of-concept for the application of SLR to a bioinformatics problem and the analysis of P-type ATPases pinpoints new and interesting targets for further biochemical characterization and structural analysis.

Suggested Citation

  • Bjørn P Pedersen & Georgiana Ifrim & Poul Liboriussen & Kristian B Axelsen & Michael G Palmgren & Poul Nissen & Carsten Wiuf & Christian N S Pedersen, 2014. "Large Scale Identification and Categorization of Protein Sequences Using Structured Logistic Regression," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
  • Handle: RePEc:plo:pone00:0085139
    DOI: 10.1371/journal.pone.0085139
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085139
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0085139&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0085139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bjørn P. Pedersen & Morten J. Buch-Pedersen & J. Preben Morth & Michael G. Palmgren & Poul Nissen, 2007. "Crystal structure of the plasma membrane proton pump," Nature, Nature, vol. 450(7172), pages 1111-1114, December.
    2. Claus Olesen & Martin Picard & Anne-Marie Lund Winther & Claus Gyrup & J. Preben Morth & Claus Oxvig & Jesper Vuust Møller & Poul Nissen, 2007. "The structural basis of calcium transport by the calcium pump," Nature, Nature, vol. 450(7172), pages 1036-1042, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Zhao & Chaoran Zhao & Dandan Chen & Caihong Yun & Huilin Li & Lin Bai, 2021. "Structure and activation mechanism of the hexameric plasma membrane H+-ATPase," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Zongxin Guo & Fredrik Orädd & Viktoria Bågenholm & Christina Grønberg & Jian Feng Ma & Peter Ott & Yong Wang & Magnus Andersson & Per Amstrup Pedersen & Kaituo Wang & Pontus Gourdon, 2024. "Diverse roles of the metal binding domains and transport mechanism of copper transporting P-type ATPases," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Phong T. Nguyen & Christine Deisl & Michael Fine & Trevor S. Tippetts & Emiko Uchikawa & Xiao-chen Bai & Beth Levine, 2022. "Structural basis for gating mechanism of the human sodium-potassium pump," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Yingying Guo & Yuanyuan Zhang & Renhong Yan & Bangdong Huang & Fangfei Ye & Liushu Wu & Ximin Chi & Yi shi & Qiang Zhou, 2022. "Cryo-EM structures of recombinant human sodium-potassium pump determined in three different states," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Hong Il Choi & Sung-Won Hwang & Jongrae Kim & Byeonghyeok Park & EonSeon Jin & In-Geol Choi & Sang Jun Sim, 2021. "Augmented CO2 tolerance by expressing a single H+-pump enables microalgal valorization of industrial flue gas," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    6. Saashia Fuji & Shota Yamauchi & Naoyuki Sugiyama & Takayuki Kohchi & Ryuichi Nishihama & Ken-ichiro Shimazaki & Atsushi Takemiya, 2024. "Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory domain of plasma membrane H+-ATPase," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0085139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.