IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0082866.html
   My bibliography  Save this article

Vehicle Scheduling Schemes for Commercial and Emergency Logistics Integration

Author

Listed:
  • Xiaohui Li
  • Qingmei Tan

Abstract

In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models.

Suggested Citation

  • Xiaohui Li & Qingmei Tan, 2013. "Vehicle Scheduling Schemes for Commercial and Emergency Logistics Integration," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-10, December.
  • Handle: RePEc:plo:pone00:0082866
    DOI: 10.1371/journal.pone.0082866
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082866
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0082866&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0082866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Linet Özdamar & Ediz Ekinci & Beste Küçükyazici, 2004. "Emergency Logistics Planning in Natural Disasters," Annals of Operations Research, Springer, vol. 129(1), pages 217-245, July.
    2. Barbarosoglu, Gulay & Ozdamar, Linet & Cevik, Ahmet, 2002. "An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations," European Journal of Operational Research, Elsevier, vol. 140(1), pages 118-133, July.
    3. Yi, Wei & Kumar, Arun, 2007. "Ant colony optimization for disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 660-672, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    2. Yisha Xiang & Jun Zhuang, 2016. "A medical resource allocation model for serving emergency victims with deteriorating health conditions," Annals of Operations Research, Springer, vol. 236(1), pages 177-196, January.
    3. Lei Lei & Michael Pinedo & Lian Qi & Shengbin Wang & Jian Yang, 2015. "Personnel scheduling and supplies provisioning in emergency relief operations," Annals of Operations Research, Springer, vol. 235(1), pages 487-515, December.
    4. Ruyang Yin & Peixia Lu, 2022. "A Cluster-First Route-Second Constructive Heuristic Method for Emergency Logistics Scheduling in Urban Transport Networks," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    5. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2016. "Online optimization of casualty processing in major incident response: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 252(1), pages 334-348.
    6. Yanbin Chang & Yongjia Song & Burak Eksioglu, 2022. "A stochastic look-ahead approach for hurricane relief logistics operations planning under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 1231-1263, December.
    7. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    8. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    9. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    10. Afshin Kamyabniya & M. M. Lotfi & Mohsen Naderpour & Yuehwern Yih, 2018. "Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach," Information Systems Frontiers, Springer, vol. 20(4), pages 759-782, August.
    11. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    12. Sheu, Jiuh-Biing, 2014. "Post-disaster relief–service centralized logistics distribution with survivor resilience maximization," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 288-314.
    13. Ann Melissa Campbell & Dieter Vandenbussche & William Hermann, 2008. "Routing for Relief Efforts," Transportation Science, INFORMS, vol. 42(2), pages 127-145, May.
    14. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    15. Alfonso J. Pedraza-Martinez & Sameer Hasija & Luk N. Van Wassenhove, 2020. "Fleet Coordination in Decentralized Humanitarian Operations Funded by Earmarked Donations," Operations Research, INFORMS, vol. 68(4), pages 984-999, July.
    16. Chi, Hong & Li, Jialian & Shao, Xueyan & Gao, Mingang, 2017. "Timeliness evaluation of emergency resource scheduling," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1022-1032.
    17. Serap Ergün & Pınar Usta & Sırma Zeynep Alparslan Gök & Gerhard Wilhelm Weber, 2023. "A game theoretical approach to emergency logistics planning in natural disasters," Annals of Operations Research, Springer, vol. 324(1), pages 855-868, May.
    18. Ali Ekici & Okan Örsan Özener, 2020. "Inventory routing for the last mile delivery of humanitarian relief supplies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 621-660, September.
    19. Moreno, Alfredo & Alem, Douglas & Ferreira, Deisemara & Clark, Alistair, 2018. "An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1050-1071.
    20. Liu, Kanglin & Yang, Liu & Zhao, Yejia & Zhang, Zhi-Hai, 2023. "Multi-period stochastic programming for relief delivery considering evolving transportation network and temporary facility relocation/closure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0082866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.