IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2301-d751970.html
   My bibliography  Save this article

A Cluster-First Route-Second Constructive Heuristic Method for Emergency Logistics Scheduling in Urban Transport Networks

Author

Listed:
  • Ruyang Yin

    (Institute of Transport Studies, Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia)

  • Peixia Lu

    (Institute of Architectural Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, China)

Abstract

Advanced strategies for emergency logistics scheduling problems in urban transport networks have been a challenging topic for centuries. This study proposed a cluster-first route-second constructive heuristic method based on the continuous approximation (CA) for ‘one-to-many’ vehicle routing to dispatch commidities after an emergency. The objective of the study is to provide a replenish schedule and routing solution from the government/provider’s end in order to minimize the total motion cost, pipeline inventory cost, and holding cost with backorder for the disaster relief operation. The developed method can turn the complicated vehicle routing problem (VRP) into a relatively simple travel salesman problem (TSP) for pre-assigned customer sets. The CA is employed to determine the optimal replenish amount and inventory level for the route serving a given location. The Christofides method is then applied to solve the TSP for the selected cluster. Two clustering methods are investigated in this research: (1) a local-based approach where clustering and routing are determined; and (2) a K-mean clustering method where points are clustered upfront by the CA solution. A case study in Miami-Dade County in Florida to dispatch fuels from the depot to 72 gas stations is presented, demonstrating the proposed approach and comparing two clustering methods. The numerical results illustrate the effectiveness of the algorithms and conclude that the local-based clustering approach may yield a lower total cost with a higher motion cost.

Suggested Citation

  • Ruyang Yin & Peixia Lu, 2022. "A Cluster-First Route-Second Constructive Heuristic Method for Emergency Logistics Scheduling in Urban Transport Networks," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2301-:d:751970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2301/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2301/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Sheu, Jiuh-Biing, 2007. "An emergency logistics distribution approach for quick response to urgent relief demand in disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 687-709, November.
    3. Zhou, Yawen & Liu, Jing & Zhang, Yutong & Gan, Xiaohui, 2017. "A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 77-95.
    4. Rita Der Sarkissian & Anas Dabaj & Youssef Diab & Marc Vuillet, 2021. "Evaluating the Implementation of the “Build-Back-Better” Concept for Critical Infrastructure Systems: Lessons from Saint-Martin’s Island Following Hurricane Irma," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    5. Linet Özdamar & Ediz Ekinci & Beste Küçükyazici, 2004. "Emergency Logistics Planning in Natural Disasters," Annals of Operations Research, Springer, vol. 129(1), pages 217-245, July.
    6. Alexander J. Miller & Mauricio E. Arias & Sergio Alvarez, 2021. "Built environment and agricultural value at risk from Hurricane Irma flooding in Florida (USA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1327-1348, November.
    7. Youqiang Sun & Yeqing Ren & Xingjuan Cai, 2020. "Biobjective Emergency Logistics Scheduling Model Based on Uncertain Traffic Conditions," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, January.
    8. Barbarosoglu, Gulay & Ozdamar, Linet & Cevik, Ahmet, 2002. "An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations," European Journal of Operational Research, Elsevier, vol. 140(1), pages 118-133, July.
    9. Chen, Jingxu & Liu, Zhiyuan & Wang, Shuaian & Chen, Xuewu, 2018. "Continuum approximation modeling of transit network design considering local route service and short-turn strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 165-188.
    10. Yi, Wei & Kumar, Arun, 2007. "Ant colony optimization for disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 660-672, November.
    11. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    12. Xin Tan & Penglin Zhang & Junqiang Wang & Jiewen Hong, 2019. "Research on Urban Bearing Capacity of Gas Supply Stations," Sustainability, MDPI, vol. 11(24), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    2. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    3. Yanbin Chang & Yongjia Song & Burak Eksioglu, 2022. "A stochastic look-ahead approach for hurricane relief logistics operations planning under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 1231-1263, December.
    4. Renata Turkeš & Daniel Palhazi Cuervo & Kenneth Sörensen, 2019. "Pre-positioning of emergency supplies: does putting a price on human life help to save lives?," Annals of Operations Research, Springer, vol. 283(1), pages 865-895, December.
    5. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    6. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    7. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    8. Afshin Kamyabniya & M. M. Lotfi & Mohsen Naderpour & Yuehwern Yih, 2018. "Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach," Information Systems Frontiers, Springer, vol. 20(4), pages 759-782, August.
    9. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    10. Yisha Xiang & Jun Zhuang, 2016. "A medical resource allocation model for serving emergency victims with deteriorating health conditions," Annals of Operations Research, Springer, vol. 236(1), pages 177-196, January.
    11. Moreno, Alfredo & Alem, Douglas & Ferreira, Deisemara & Clark, Alistair, 2018. "An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1050-1071.
    12. Liu, Kanglin & Yang, Liu & Zhao, Yejia & Zhang, Zhi-Hai, 2023. "Multi-period stochastic programming for relief delivery considering evolving transportation network and temporary facility relocation/closure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    13. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2016. "Online optimization of casualty processing in major incident response: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 252(1), pages 334-348.
    14. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    15. Jeong, Ho Young & Yu, David J. & Min, Byung-Cheol & Lee, Seokcheon, 2020. "The humanitarian flying warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    16. Sheu, Jiuh-Biing, 2014. "Post-disaster relief–service centralized logistics distribution with survivor resilience maximization," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 288-314.
    17. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    18. Masoud Mahootchi & Sajjad Golmohammadi, 2018. "Developing a new stochastic model considering bi-directional relations in a natural disaster: a possible earthquake in Tehran (the Capital of Islamic Republic of Iran)," Annals of Operations Research, Springer, vol. 269(1), pages 439-473, October.
    19. Alfonso J. Pedraza-Martinez & Sameer Hasija & Luk N. Van Wassenhove, 2020. "Fleet Coordination in Decentralized Humanitarian Operations Funded by Earmarked Donations," Operations Research, INFORMS, vol. 68(4), pages 984-999, July.
    20. Li, Xiaoping & Batta, Rajan & Kwon, Changhyun, 2017. "Effective and equitable supply of gasoline to impacted areas in the aftermath of a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 25-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2301-:d:751970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.