IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0081873.html
   My bibliography  Save this article

Leaf Longevity as a Normalization Constant in Allometric Predictions of Plant Production

Author

Listed:
  • Kihachiro Kikuzawa
  • Kenji Seiwa
  • Martin J Lechowicz

Abstract

In metabolic scaling theory the size-dependence of plant processes is described by a power function of form Y=YoMθ where Y is a characteristic such as plant productivity that changes with plant size (M) raised to the θth power and Yo is a normalization constant that adjusts the general relationship across environments and species. In essence, the theory considers that the value of θ arises in the size-dependent relationship between leaf area and vascular architecture that influences plant function and that Yo modulates this general relationship to account for ecological and evolutionary effects on the exchange of resources between plant and environment. Enquist and colleagues have shown from first principles that Yo is a function of carbon use efficiency, the carbon fraction of a plant, the area-specific carbon assimilation rate of a leaf, the laminar area of a leaf, and the mass of a leaf. We show that leaf longevity provides a functional integration of these traits that can serve as a simpler normalization in scaling plant productivity for individual species and potentially for mixed-species communities as well.

Suggested Citation

  • Kihachiro Kikuzawa & Kenji Seiwa & Martin J Lechowicz, 2013. "Leaf Longevity as a Normalization Constant in Allometric Predictions of Plant Production," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
  • Handle: RePEc:plo:pone00:0081873
    DOI: 10.1371/journal.pone.0081873
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081873
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0081873&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0081873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brian J. Enquist & Andrew J. Kerkhoff & Scott C. Stark & Nathan G. Swenson & Megan C. McCarthy & Charles A. Price, 2007. "A general integrative model for scaling plant growth, carbon flux, and functional trait spectra," Nature, Nature, vol. 449(7159), pages 218-222, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohei Koyama & Yoshiki Hidaka & Masayuki Ushio, 2012. "Dynamic Scaling in the Growth of a Non-Branching Plant, Cardiocrinum cordatum," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-5, September.
    2. Watt, Michael S. & Kirschbaum, Miko U.F., 2011. "Moving beyond simple linear allometric relationships between tree height and diameter," Ecological Modelling, Elsevier, vol. 222(23), pages 3910-3916.
    3. Hunt, Allen G. & Faybishenko, Boris & Powell, Thomas L., 2020. "A new phenomenological model to describe root-soil interactions based on percolation theory," Ecological Modelling, Elsevier, vol. 433(C).
    4. Pekka Kaitaniemi, 2008. "How to Derive Biological Information from the Value of the Normalization Constant in Allometric Equations," PLOS ONE, Public Library of Science, vol. 3(4), pages 1-4, April.
    5. Zhiqiang Wang & Heng Huang & Han Wang & Josep Peñuelas & Jordi Sardans & Ülo Niinemets & Karl J. Niklas & Yan Li & Jiangbo Xie & Ian J. Wright, 2022. "Leaf water content contributes to global leaf trait relationships," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Zakharova, L. & Meyer, K.M. & Seifan, M., 2019. "Trait-based modelling in ecology: A review of two decades of research," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0081873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.