IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0080506.html
   My bibliography  Save this article

Determining Disease Intervention Strategies Using Spatially Resolved Simulations

Author

Listed:
  • Mark Read
  • Paul S Andrews
  • Jon Timmis
  • Richard A Williams
  • Richard B Greaves
  • Huiming Sheng
  • Mark Coles
  • Vipin Kumar

Abstract

Predicting efficacy and optimal drug delivery strategies for small molecule and biological therapeutics is challenging due to the complex interactions between diverse cell types in different tissues that determine disease outcome. Here we present a new methodology to simulate inflammatory disease manifestation and test potential intervention strategies in silico using agent-based computational models. Simulations created using this methodology have explicit spatial and temporal representations, and capture the heterogeneous and stochastic cellular behaviours that lead to emergence of pathology or disease resolution. To demonstrate this methodology we have simulated the prototypic murine T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. In the simulation immune cell dynamics, neuronal damage and tissue specific pathology emerge, closely resembling behaviour found in the murine model. Using the calibrated simulation we have analysed how changes in the timing and efficacy of T cell receptor signalling inhibition leads to either disease exacerbation or resolution. The technology described is a powerful new method to understand cellular behaviours in complex inflammatory disease, permits rational design of drug interventional strategies and has provided new insights into the role of TCR signalling in autoimmune disease progression.

Suggested Citation

  • Mark Read & Paul S Andrews & Jon Timmis & Richard A Williams & Richard B Greaves & Huiming Sheng & Mark Coles & Vipin Kumar, 2013. "Determining Disease Intervention Strategies Using Spatially Resolved Simulations," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
  • Handle: RePEc:plo:pone00:0080506
    DOI: 10.1371/journal.pone.0080506
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080506
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0080506&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0080506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kieran Alden & Mark Read & Jon Timmis & Paul S Andrews & Henrique Veiga-Fernandes & Mark Coles, 2013. "Spartan: A Comprehensive Tool for Understanding Uncertainty in Simulations of Biological Systems," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Russell, Robin E. & Walsh, Daniel P. & Samuel, Michael D. & Grunnill, Martin D. & Rocke, Tonie E., 2021. "Space matters: host spatial structure and the dynamics of plague transmission," Ecological Modelling, Elsevier, vol. 443(C).
    2. Brinkmann, Katja & Kübler, Daniel & Liehr, Stefan & Buerkert, Andreas, 2021. "Agent-based modelling of the social-ecological nature of poverty traps in southwestern Madagascar," Agricultural Systems, Elsevier, vol. 190(C).
    3. Mark N Read & Jacqueline Bailey & Jon Timmis & Tatyana Chtanova, 2016. "Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based Model Selection," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-34, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0080506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.