IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0079354.html
   My bibliography  Save this article

Information Filtering in Sparse Online Systems: Recommendation via Semi-Local Diffusion

Author

Listed:
  • Wei Zeng
  • An Zeng
  • Ming-Sheng Shang
  • Yi-Cheng Zhang

Abstract

With the rapid growth of the Internet and overwhelming amount of information and choices that people are confronted with, recommender systems have been developed to effectively support users’ decision-making process in the online systems. However, many recommendation algorithms suffer from the data sparsity problem, i.e. the user-object bipartite networks are so sparse that algorithms cannot accurately recommend objects for users. This data sparsity problem makes many well-known recommendation algorithms perform poorly. To solve the problem, we propose a recommendation algorithm based on the semi-local diffusion process on the user-object bipartite network. The simulation results on two sparse datasets, Amazon and Bookcross, show that our method significantly outperforms the state-of-the-art methods especially for those small-degree users. Two personalized semi-local diffusion methods are proposed which further improve the recommendation accuracy. Finally, our work indicates that sparse online systems are essentially different from the dense online systems, so it is necessary to reexamine former algorithms and conclusions based on dense data in sparse systems.

Suggested Citation

  • Wei Zeng & An Zeng & Ming-Sheng Shang & Yi-Cheng Zhang, 2013. "Information Filtering in Sparse Online Systems: Recommendation via Semi-Local Diffusion," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
  • Handle: RePEc:plo:pone00:0079354
    DOI: 10.1371/journal.pone.0079354
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079354
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0079354&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0079354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Zeng & Ming-Sheng Shang & Qian-Ming Zhang & Linyuan Lü & Tao Zhou, 2010. "Can Dissimilar Users Contribute To Accuracy And Diversity Of Personalized Recommendation?," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 21(10), pages 1217-1227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Bhaskaran & Raja Marappan & B. Santhi, 2020. "Design and Comparative Analysis of New Personalized Recommender Algorithms with Specific Features for Large Scale Datasets," Mathematics, MDPI, vol. 8(7), pages 1-27, July.
    2. Liao, Hao & Zeng, An & Zhang, Yi-Cheng, 2015. "Predicting missing links via correlation between nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 216-223.
    3. Yu, Fei & Zeng, An & Gillard, Sébastien & Medo, Matúš, 2016. "Network-based recommendation algorithms: A review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 192-208.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. YingSi Zhao & Bo Shen, 2016. "Empirical Study of User Preferences Based on Rating Data of Movies," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-19, January.
    2. Wei Zeng & An Zeng & Hao Liu & Ming-Sheng Shang & Yi-Cheng Zhang, 2014. "Similarity from Multi-Dimensional Scaling: Solving the Accuracy and Diversity Dilemma in Information Filtering," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0079354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.