IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0079168.html
   My bibliography  Save this article

Model-Based Control of Observer Bias for the Analysis of Presence-Only Data in Ecology

Author

Listed:
  • David I Warton
  • Ian W Renner
  • Daniel Ramp

Abstract

Presence-only data, where information is available concerning species presence but not species absence, are subject to bias due to observers being more likely to visit and record sightings at some locations than others (hereafter “observer bias”). In this paper, we describe and evaluate a model-based approach to accounting for observer bias directly – by modelling presence locations as a function of known observer bias variables (such as accessibility variables) in addition to environmental variables, then conditioning on a common level of bias to make predictions of species occurrence free of such observer bias. We implement this idea using point process models with a LASSO penalty, a new presence-only method related to maximum entropy modelling, that implicitly addresses the “pseudo-absence problem” of where to locate pseudo-absences (and how many). The proposed method of bias-correction is evaluated using systematically collected presence/absence data for 62 plant species endemic to the Blue Mountains near Sydney, Australia. It is shown that modelling and controlling for observer bias significantly improves the accuracy of predictions made using presence-only data, and usually improves predictions as compared to pseudo-absence or “inventory” methods of bias correction based on absences from non-target species. Future research will consider the potential for improving the proposed bias-correction approach by estimating the observer bias simultaneously across multiple species.

Suggested Citation

  • David I Warton & Ian W Renner & Daniel Ramp, 2013. "Model-Based Control of Observer Bias for the Analysis of Presence-Only Data in Ecology," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-9, November.
  • Handle: RePEc:plo:pone00:0079168
    DOI: 10.1371/journal.pone.0079168
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079168
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0079168&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0079168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Avishek Chakraborty & Alan E. Gelfand & Adam M. Wilson & Andrew M. Latimer & John A. Silander, 2011. "Point pattern modelling for degraded presence‐only data over large regions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(5), pages 757-776, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    2. Martín, Gerardo & Yáñez-Arenas, Carlos & Chiappa-Carrara, Xavier, 2022. "Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration," Ecological Modelling, Elsevier, vol. 469(C).
    3. Fernández, Daniel & Nakamura, Miguel, 2015. "Estimation of spatial sampling effort based on presence-only data and accessibility," Ecological Modelling, Elsevier, vol. 299(C), pages 147-155.
    4. Christophe Botella & Alexis Joly & Pascal Monestiez & Pierre Bonnet & François Munoz, 2020. "Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
    5. Hamilton, Serena H. & Pollino, Carmel A. & Jakeman, Anthony J., 2015. "Habitat suitability modelling of rare species using Bayesian networks: Model evaluation under limited data," Ecological Modelling, Elsevier, vol. 299(C), pages 64-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Botella & Alexis Joly & Pascal Monestiez & Pierre Bonnet & François Munoz, 2020. "Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
    2. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    3. D. Simpson & J. B. Illian & F. Lindgren & S. H. Sørbye & H. Rue, 2016. "Going off grid: computationally efficient inference for log-Gaussian Cox processes," Biometrika, Biometrika Trust, vol. 103(1), pages 49-70.
    4. Ian W. Renner & David I. Warton, 2013. "Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology," Biometrics, The International Biometric Society, vol. 69(1), pages 274-281, March.
    5. Robert M. Dorazio, 2012. "Predicting the Geographic Distribution of a Species from Presence-Only Data Subject to Detection Errors," Biometrics, The International Biometric Society, vol. 68(4), pages 1303-1312, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0079168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.