IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0076654.html
   My bibliography  Save this article

Graphical Tools for Network Meta-Analysis in STATA

Author

Listed:
  • Anna Chaimani
  • Julian P T Higgins
  • Dimitris Mavridis
  • Panagiota Spyridonos
  • Georgia Salanti

Abstract

Network meta-analysis synthesizes direct and indirect evidence in a network of trials that compare multiple interventions and has the potential to rank the competing treatments according to the studied outcome. Despite its usefulness network meta-analysis is often criticized for its complexity and for being accessible only to researchers with strong statistical and computational skills. The evaluation of the underlying model assumptions, the statistical technicalities and presentation of the results in a concise and understandable way are all challenging aspects in the network meta-analysis methodology. In this paper we aim to make the methodology accessible to non-statisticians by presenting and explaining a series of graphical tools via worked examples. To this end, we provide a set of STATA routines that can be easily employed to present the evidence base, evaluate the assumptions, fit the network meta-analysis model and interpret its results.

Suggested Citation

  • Anna Chaimani & Julian P T Higgins & Dimitris Mavridis & Panagiota Spyridonos & Georgia Salanti, 2013. "Graphical Tools for Network Meta-Analysis in STATA," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-12, October.
  • Handle: RePEc:plo:pone00:0076654
    DOI: 10.1371/journal.pone.0076654
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076654
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0076654&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0076654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lu, Guobing & Ades, A.E., 2006. "Assessing Evidence Inconsistency in Mixed Treatment Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 447-459, June.
    2. Ian R. White, 2011. "Multivariate random-effects meta-regression: Updates to mvmeta," Stata Journal, StataCorp LP, vol. 11(2), pages 255-270, June.
    3. Jaime L. Peters & Alex J. Sutton & David R. Jones & Keith R. Abrams & Lesley Rushton & Santiago G. Moreno, 2010. "Assessing publication bias in meta‐analyses in the presence of between‐study heterogeneity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 575-591, July.
    4. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    5. Sarah Donegan & Paula Williamson & Carrol Gamble & Catrin Tudur-Smith, 2010. "Indirect Comparisons: A Review of Reporting and Methodological Quality," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwanhee Hong & Bradley P. Carlin & Tatyana A. Shamliyan & Jean F. Wyman & Rema Ramakrishnan & François Sainfort & Robert L. Kane, 2013. "Comparing Bayesian and Frequentist Approaches for Multiple Outcome Mixed Treatment Comparisons," Medical Decision Making, , vol. 33(5), pages 702-714, July.
    2. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 3," Medical Decision Making, , vol. 33(5), pages 618-640, July.
    3. Morris, Tim P & White, Ian R & Pham, Tra My & Quartagno, Matteo, 2023. "How to check a simulation study," OSF Preprints cbr72, Center for Open Science.
    4. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    5. Nelson, Jon Paul, 2020. "Fixed-effect versus random-effects meta-analysis in economics: A study of pass-through rates for alcohol beverage excise taxes," Economics Discussion Papers 2020-1, Kiel Institute for the World Economy (IfW Kiel).
    6. Ibrahim Y. Tawbe, 2023. "Environmental disclosure programs and birth weight: a meta- analysis," Working Papers 2023-02, CRESE.
    7. Alberto Aiolfi & Emanuele Asti & Emanuele Rausa & Giulia Bonavina & Gianluca Bonitta & Luigi Bonavina, 2018. "Use of C-reactive protein for the early prediction of anastomotic leak after esophagectomy: Systematic review and Bayesian meta-analysis," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-13, December.
    8. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 6," Medical Decision Making, , vol. 33(5), pages 671-678, July.
    9. Polák, Petr, 2017. "The productivity paradox: A meta-analysis," Information Economics and Policy, Elsevier, vol. 38(C), pages 38-54.
    10. Shuyan Gu & Jihao Shi & Zhiliu Tang & Monika Sawhney & Huimei Hu & Lizheng Shi & Vivian Fonseca & Hengjin Dong, 2015. "Comparison of Glucose Lowering Effect of Metformin and Acarbose in Type 2 Diabetes Mellitus: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-22, May.
    11. Dan Jackson & Sylwia Bujkiewicz & Martin Law & Richard D. Riley & Ian R. White, 2018. "A matrix†based method of moments for fitting multivariate network meta†analysis models with multiple outcomes and random inconsistency effects," Biometrics, The International Biometric Society, vol. 74(2), pages 548-556, June.
    12. van Aert, Robbie Cornelis Maria, 2023. "Meta-analyzing non-preregistered and preregistered studies," MetaArXiv 2bj85_v1, Center for Open Science.
    13. Cebiroglu, Gökhan & Hautsch, Nikolaus & Walsh, Christopher, 2019. "Revisiting the stealth trading hypothesis: Does time-varying liquidity explain the size-effect?," CFS Working Paper Series 625, Center for Financial Studies (CFS).
    14. Giammarco Alderotti & Daniele Vignoli & Michela Baccini & Anna Matysiak, 2019. "Employment Uncertainty and Fertility: A Network Meta-Analysis of European Research Findings," Econometrics Working Papers Archive 2019_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    15. Pepijn Vemer & Maiwenn J Al & Mark Oppe & Maureen P M H Rutten-van Mölken, 2017. "Mix and match. A simulation study on the impact of mixed-treatment comparison methods on health-economic outcomes," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-20, February.
    16. Stanley, T. D. & Doucouliagos, Hristos, 2013. "Better than random: weighted least squares meta-regression analysis," Working Papers eco_2013_2, Deakin University, Department of Economics.
    17. Dan Jackson, 2018. "Discussion on Quantifying publication bias in meta‐analysis," Biometrics, The International Biometric Society, vol. 74(3), pages 795-796, September.
    18. Bodnar, Olha & Bodnar, Taras, 2024. "Gibbs sampler approach for objective Bayesian inference in elliptical multivariate meta-analysis random effects model," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    19. Schmidli, Heinz & Neuenschwander, Beat & Friede, Tim, 2017. "Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 100-110.
    20. Layan Sukik & Maryam Alyafei & Manale Harfouche & Laith J Abu-Raddad, 2019. "Herpes simplex virus type 1 epidemiology in Latin America and the Caribbean: Systematic review and meta-analytics," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-20, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0076654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.