IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0076249.html
   My bibliography  Save this article

Healthcare Environments and Spatial Variability of Healthcare Associated Infection Risk: Cross-Sectional Surveys

Author

Listed:
  • Jean Gaudart
  • Elaine Cloutman-Green
  • Serge Guillas
  • Nikki D’Arcy
  • John C Hartley
  • Vanya Gant
  • Nigel Klein

Abstract

Prevalence of healthcare associated infections remains high in patients in intensive care units (ICU), estimated at 23.4% in 2011. It is important to reduce the overall risk while minimizing the cost and disruption to service provision by targeted infection control interventions. The aim of this study was to develop a monitoring tool to analyze the spatial variability of bacteriological contamination within the healthcare environment to assist in the planning of interventions. Within three cross-sectional surveys, in two ICU wards, air and surface samples from different heights and locations were analyzed. Surface sampling was carried out with tryptic Soy Agar contact plates and Total Viable Counts (TVC) were calculated at 48hrs (incubation at 37°C). TVCs were analyzed using Poisson Generalized Additive Mixed Model for surface type analysis, and for spatial analysis. Through three cross-sectional survey, 370 samples were collected. Contamination varied from place-to-place, height-to-height, and by surface type. Hard-to-reach surfaces, such as bed wheels and floor area under beds, were generally more contaminated, but the height level at which maximal TVCs were found changed between cross-sectional surveys. Bedside locations and bed occupation were risk factors for contamination. Air sampling identified clusters of contamination around the nursing station and surface sampling identified contamination clusters at numerous bed locations. By investigating dynamic hospital wards, the methodology employed in this study will be useful to monitor contamination variability within the healthcare environment and should help to assist in the planning of interventions.

Suggested Citation

  • Jean Gaudart & Elaine Cloutman-Green & Serge Guillas & Nikki D’Arcy & John C Hartley & Vanya Gant & Nigel Klein, 2013. "Healthcare Environments and Spatial Variability of Healthcare Associated Infection Risk: Cross-Sectional Surveys," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
  • Handle: RePEc:plo:pone00:0076249
    DOI: 10.1371/journal.pone.0076249
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076249
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0076249&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0076249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Augustin, Nicole H. & Sauleau, Erik-André & Wood, Simon N., 2012. "On quantile quantile plots for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2404-2409.
    2. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    3. Simon N. Wood, 2008. "Fast stable direct fitting and smoothness selection for generalized additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 495-518, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    2. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    3. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    4. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    5. Paolo Veneri, 2018. "Urban spatial structure in OECD cities: Is urban population decentralising or clustering?," Papers in Regional Science, Wiley Blackwell, vol. 97(4), pages 1355-1374, November.
    6. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
    7. Musolesi Antonio & Mazzanti Massimiliano, 2014. "Nonlinearity, heterogeneity and unobserved effects in the carbon dioxide emissions-economic development relation for advanced countries," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 521-541, December.
    8. Sylvie Charlot & Riccardo Crescenzi & Antonio Musolesi, 2014. "Augmented and Unconstrained: revisiting the Regional Knowledge Production Function," SEEDS Working Papers 2414, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
    9. Longhi, C. & Musolesi, A. & Baumont, C., 2013. "Modeling the industrial dynamics of the European metropolitan areas during the process of economic integration: a semiparametric approach," Working Papers 2013-10, Grenoble Applied Economics Laboratory (GAEL).
    10. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    11. Caren Hasler & Radu V. Craiu, 2020. "Nonparametric imputation method for nonresponse in surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 25-48, March.
    12. Rodríguez-Álvarez, María Xosé & Lee, Dae-Jin & Kneib, Thomas & Durbán, María & Eilers, Paul, 2013. "Fast algorithm for smoothing parameter selection in multidimensional generalized P-splines," DES - Working Papers. Statistics and Econometrics. WS ws133026, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Mazzanti, Massimiliano & Musolesi, Antonio, 2013. "Nonlinearity, Heterogeneity and Unobserved Effects in the CO2-income Relation for Advanced Countries," Climate Change and Sustainable Development 162374, Fondazione Eni Enrico Mattei (FEEM).
    14. Vijay A. Murik, 2013. "Bond pricing with a surface of zero coupon yields," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(2), pages 497-512, June.
    15. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    17. M.L. Nores & M.P. Díaz, 2016. "Bootstrap hypothesis testing in generalized additive models for comparing curves of treatments in longitudinal studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 810-826, April.
    18. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    19. Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. Iñaki Galán & Lorena Simón & Elena Boldo & Cristina Ortiz & Rafael Fernández-Cuenca & Cristina Linares & María José Medrano & Roberto Pastor-Barriuso, 2017. "Changes in hospitalizations for chronic respiratory diseases after two successive smoking bans in Spain," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0076249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.