IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0067862.html
   My bibliography  Save this article

Dental Informatics to Characterize Patients with Dentofacial Deformities

Author

Listed:
  • Seoung Bum Kim
  • Jung Woo Lee
  • Sin Young Kim
  • Deok Won Lee

Abstract

Relevant statistical modeling and analysis of dental data can improve diagnostic and treatment procedures. The purpose of this study is to demonstrate the use of various data mining algorithms to characterize patients with dentofacial deformities. A total of 72 patients with skeletal malocclusions who had completed orthodontic and orthognathic surgical treatments were examined. Each patient was characterized by 22 measurements related to dentofacial deformities. Clustering analysis and visualization grouped the patients into three different patterns of dentofacial deformities. A feature selection approach based on a false discovery rate was used to identify a subset of 22 measurements important in categorizing these three clusters. Finally, classification was performed to evaluate the quality of the measurements selected by the feature selection approach. The results showed that feature selection improved classification accuracy while simultaneously determining which measurements were relevant.

Suggested Citation

  • Seoung Bum Kim & Jung Woo Lee & Sin Young Kim & Deok Won Lee, 2013. "Dental Informatics to Characterize Patients with Dentofacial Deformities," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
  • Handle: RePEc:plo:pone00:0067862
    DOI: 10.1371/journal.pone.0067862
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067862
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0067862&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0067862?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    2. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    3. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun Baek & Sun-Kyoung Park, 2015. "Sustainable Development Plan for Korea through Expansion of Green IT: Policy Issues for the Effective Utilization of Big Data," Sustainability, MDPI, vol. 7(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    2. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    3. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    4. Zhiguang Huo & Li Zhu & Tianzhou Ma & Hongcheng Liu & Song Han & Daiqing Liao & Jinying Zhao & George Tseng, 2020. "Two-Way Horizontal and Vertical Omics Integration for Disease Subtype Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(1), pages 1-22, April.
    5. Nathalia Castellanos & Dhruv Desai & Sebastian Frank & Stefano Pasquali & Dhagash Mehta, 2024. "Can an unsupervised clustering algorithm reproduce a categorization system?," Papers 2408.10340, arXiv.org.
    6. Nilsen Gro & Borgan Ørnulf & LiestØl Knut & Lingjærde Ole Christian, 2013. "Identifying clusters in genomics data by recursive partitioning," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 637-652, October.
    7. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    8. Ja‐Yoon Jang & Hee‐Seok Oh & Yaeji Lim & Ying Kuen Cheung, 2021. "Ensemble clustering for step data via binning," Biometrics, The International Biometric Society, vol. 77(1), pages 293-304, March.
    9. Edoardo Saccenti & Johan A Westerhuis & Age K Smilde & Mariët J van der Werf & Jos A Hageman & Margriet M W B Hendriks, 2011. "Simplivariate Models: Uncovering the Underlying Biology in Functional Genomics Data," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-13, June.
    10. Douglas Steinley, 2007. "Validating Clusters with the Lower Bound for Sum-of-Squares Error," Psychometrika, Springer;The Psychometric Society, vol. 72(1), pages 93-106, March.
    11. Jonathon J. O’Brien & Michael T. Lawson & Devin K. Schweppe & Bahjat F. Qaqish, 2020. "Suboptimal Comparison of Partitions," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 435-461, July.
    12. Lingsong Meng & Dorina Avram & George Tseng & Zhiguang Huo, 2022. "Outcome‐guided sparse K‐means for disease subtype discovery via integrating phenotypic data with high‐dimensional transcriptomic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 352-375, March.
    13. Xuehai Wang & Michael Nissen & Deanne Gracias & Manabu Kusakabe & Guillermo Simkin & Aixiang Jiang & Gerben Duns & Clementine Sarkozy & Laura Hilton & Elizabeth A. Chavez & Gabriela C. Segat & Rachel , 2022. "Single-cell profiling reveals a memory B cell-like subtype of follicular lymphoma with increased transformation risk," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Fallah Shafagh & Tritchler David & Beyene Joseph, 2008. "Estimating Number of Clusters Based on a General Similarity Matrix with Application to Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-25, August.
    15. Clémençon, Stéphan, 2014. "A statistical view of clustering performance through the theory of U-processes," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 42-56.
    16. Kaczynska, S. & Marion, R. & Von Sachs, R., 2020. "Comparison of Cluster Validity Indices and Decision Rules for Different Degrees of Cluster Separation," LIDAM Discussion Papers ISBA 2020009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Fordellone, Mario & Vichi, Maurizio, 2020. "Finding groups in structural equation modeling through the partial least squares algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
    18. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    19. Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.
    20. M. Velden & A. Iodice D’Enza & F. Palumbo, 2017. "Cluster Correspondence Analysis," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 158-185, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0067862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.