IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0020747.html
   My bibliography  Save this article

Simplivariate Models: Uncovering the Underlying Biology in Functional Genomics Data

Author

Listed:
  • Edoardo Saccenti
  • Johan A Westerhuis
  • Age K Smilde
  • Mariët J van der Werf
  • Jos A Hageman
  • Margriet M W B Hendriks

Abstract

One of the first steps in analyzing high-dimensional functional genomics data is an exploratory analysis of such data. Cluster Analysis and Principal Component Analysis are then usually the method of choice. Despite their versatility they also have a severe drawback: they do not always generate simple and interpretable solutions. On the basis of the observation that functional genomics data often contain both informative and non-informative variation, we propose a method that finds sets of variables containing informative variation. This informative variation is subsequently expressed in easily interpretable simplivariate components. We present a new implementation of the recently introduced simplivariate models. In this implementation, the informative variation is described by multiplicative models that can adequately represent the relations between functional genomics data. Both a simulated and two real-life metabolomics data sets show good performance of the method.

Suggested Citation

  • Edoardo Saccenti & Johan A Westerhuis & Age K Smilde & Mariët J van der Werf & Jos A Hageman & Margriet M W B Hendriks, 2011. "Simplivariate Models: Uncovering the Underlying Biology in Functional Genomics Data," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-13, June.
  • Handle: RePEc:plo:pone00:0020747
    DOI: 10.1371/journal.pone.0020747
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020747
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0020747&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0020747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hugh Chipman & Hong Gu, 2005. "Interpretable dimension reduction," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(9), pages 969-987.
    2. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    3. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    4. Bart Selman, 2008. "A hard statistical view," Nature, Nature, vol. 451(7179), pages 639-640, February.
    5. Turner, Heather & Bailey, Trevor & Krzanowski, Wojtek, 2005. "Improved biclustering of microarray data demonstrated through systematic performance tests," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 235-254, February.
    6. Jos A Hageman & Margriet M W B Hendriks & Johan A Westerhuis & Mariët J van der Werf & Ruud Berger & Age K Smilde, 2008. "Simplivariate Models: Ideas and First Examples," PLOS ONE, Public Library of Science, vol. 3(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johan Gottfries & Silvia Melgar & Erik Michaëlsson, 2012. "Modelling of Mouse Experimental Colitis by Global Property Screens: A Holistic Approach to Assess Drug Effects in Inflammatory Bowel Disease," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-7, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mr. Emre Alper & Michal Miktus, 2019. "Digital Connectivity in sub-Saharan Africa: A Comparative Perspective," IMF Working Papers 2019/210, International Monetary Fund.
    2. Trendafilov, Nickolay T. & Vines, Karen, 2009. "Simple and interpretable discrimination," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 979-989, February.
    3. Seoung Bum Kim & Jung Woo Lee & Sin Young Kim & Deok Won Lee, 2013. "Dental Informatics to Characterize Patients with Dentofacial Deformities," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.
    4. Fallah Shafagh & Tritchler David & Beyene Joseph, 2008. "Estimating Number of Clusters Based on a General Similarity Matrix with Application to Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-25, August.
    5. Komarek, Adam M. & Kwon, Hoyoung & Haile, Beliyou & Thierfelder, Christian & Mutenje, Munyaradzi J. & Azzarri, Carlo, 2019. "From plot to scale: ex-ante assessment of conservation agriculture in Zambia," Agricultural Systems, Elsevier, vol. 173(C), pages 504-518.
    6. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    7. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    8. Thiemo Fetzer & Samuel Marden, 2017. "Take What You Can: Property Rights, Contestability and Conflict," Economic Journal, Royal Economic Society, vol. 0(601), pages 757-783, May.
    9. Daniel Agness & Travis Baseler & Sylvain Chassang & Pascaline Dupas & Erik Snowberg, 2022. "Valuing the Time of the Self-Employed," Working Papers 2022-2, Princeton University. Economics Department..
    10. Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
    11. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    12. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    13. Rizvi, Syed Kumail Abbas & Rahat, Birjees & Naqvi, Bushra & Umar, Muhammad, 2024. "Revolutionizing finance: The synergy of fintech, digital adoption, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    14. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    15. Orietta Nicolis & Jean Paul Maidana & Fabian Contreras & Danilo Leal, 2024. "Analyzing the Impact of COVID-19 on Economic Sustainability: A Clustering Approach," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    16. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    17. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    18. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    19. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    20. Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0020747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.