IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0061495.html
   My bibliography  Save this article

Age-Period-Cohort Projections of Ischaemic Heart Disease Mortality by Socio-Economic Position in a Rapidly Transitioning Chinese Population

Author

Listed:
  • Irene O L Wong
  • Benjamin J Cowling
  • Gabriel M Leung
  • C Mary Schooling

Abstract

Background: With economic development and population aging, ischaemic heart disease (IHD) is becoming a leading cause of mortality with widening inequalities in China. To forewarn the trends in China we projected IHD trends in the most economically developed part of China, i.e., Hong Kong. Methods: Based on sex-specific IHD mortality rates from 1976 to 2005, we projected mortality rates by neighborhood-level socio-economic position (i.e., low- or high-income groups) to 2020 in Hong Kong using Poisson age-period-cohort models with autoregressive priors. Results: In the low-income group, age-standardized IHD mortality rates among women declined from 33.3 deaths in 1976–1980 to 19.7 per 100,000 in 2016–2020 (from 55.5 deaths to 34.2 per 100,000 among men). The rates in the high-income group were initially higher in both sexes, particularly among men, but this had reversed by the end of the study periods. The rates declined faster for the high-income group than for the low-income group in both sexes. The rates were projected to decline faster in the high-income group, such that by the end of the projection period the high-income group would have lower IHD mortality rates, particularly for women. Birth cohort effects varied with sex, with a marked upturn in IHD mortality around 1945, i.e., for the first generation of men to grow up in a more economically developed environment. There was no such upturn in women. Birth cohort effects were the main drivers of change in IHD mortality rates. Conclusion: IHD mortality rates are declining in Hong Kong and are projected to continue to do so, even taking into account greater vulnerability for the first generation of men born into a more developed environment. At the same time social disparities in IHD have reversed and are widening, partly as a result of a cohort effect, with corresponding implications for prevention.

Suggested Citation

  • Irene O L Wong & Benjamin J Cowling & Gabriel M Leung & C Mary Schooling, 2013. "Age-Period-Cohort Projections of Ischaemic Heart Disease Mortality by Socio-Economic Position in a Rapidly Transitioning Chinese Population," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-8, April.
  • Handle: RePEc:plo:pone00:0061495
    DOI: 10.1371/journal.pone.0061495
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061495
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0061495&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0061495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ram C. Tiwari & Kathleen A. Cronin & William Davis & Eric J. Feuer & Binbing Yu & Siddhartha Chib, 2005. "Bayesian model selection for join point regression with application to age‐adjusted cancer rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(5), pages 919-939, November.
    2. Isabelle Bray, 2002. "Application of Markov chain Monte Carlo methods to projecting cancer incidence and mortality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(2), pages 151-164, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Giovanni Camarda, 2019. "Smooth constrained mortality forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(38), pages 1091-1130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    2. Kogure, Atsuyuki & Kurachi, Yoshiyuki, 2010. "A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 162-172, February.
    3. Yu, Binbing & Barrett, Michael J. & Kim, Hyune-Ju & Feuer, Eric J., 2007. "Estimating joinpoints in continuous time scale for multiple change-point models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2420-2427, February.
    4. Volker Schmid & Leonhard Held, 2004. "Bayesian Extrapolation of Space–Time Trends in Cancer Registry Data," Biometrics, The International Biometric Society, vol. 60(4), pages 1034-1042, December.
    5. Erjia Ge & Yee Leung, 2013. "Detection of crossover time scales in multifractal detrended fluctuation analysis," Journal of Geographical Systems, Springer, vol. 15(2), pages 115-147, April.
    6. Chen, Cathy W.S. & Chan, Jennifer S.K. & So, Mike K.P. & Lee, Kevin K.M., 2011. "Classification in segmented regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2276-2287, July.
    7. repec:jss:jstsof:32:i12 is not listed on IDEAS
    8. Yang, Bowen & Li, Jackie & Balasooriya, Uditha, 2015. "Using bootstrapping to incorporate model error for risk-neutral pricing of longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 16-27.
    9. Kyoji Furukawa & Munechika Misumi & John B. Cologne & Harry M. Cullings, 2016. "A Bayesian Semiparametric Model for Radiation Dose‐Response Estimation," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1211-1223, June.
    10. Chan, J.S.K. & Lam, C.P.Y. & Yu, P.L.H. & Choy, S.T.B. & Chen, C.W.S., 2012. "A Bayesian conditional autoregressive geometric process model for range data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3006-3019.
    11. Ghosh, Pulak & Huang, Lan & Yu, Binbing & Tiwari, Ram C., 2009. "Semiparametric Bayesian approaches to joinpoint regression for population-based cancer survival data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4073-4082, October.
    12. Yi Li & Ram C. Tiwari, 2008. "Comparing Trends in Cancer Rates Across Overlapping Regions," Biometrics, The International Biometric Society, vol. 64(4), pages 1280-1286, December.
    13. Giulia Carreras & Giuseppe Gorini, 2013. "Time Trends of Italian Former Smokers 1980–2009 and 2010–2030 Projections Using a Bayesian Age Period Cohort Model," IJERPH, MDPI, vol. 11(1), pages 1-12, December.
    14. Carl Schmertmann & Emilio Zagheni & Joshua R. Goldstein & Mikko Myrskylä, 2014. "Bayesian Forecasting of Cohort Fertility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 500-513, June.
    15. Kyoji Furukawa & John B. Cologne & Yukiko Shimizu & N. Phillip Ross, 2009. "Predicting Future Excess Events in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 885-899, June.
    16. Irene O L Wong & Benjamin J Cowling & Gabriel M Leung & C Mary Schooling, 2012. "Trends in Mortality from Septicaemia and Pneumonia with Economic Development: An Age-Period-Cohort Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-7, June.
    17. Muggeo, Vito M. R., 2010. "Analyzing Temperature Effects on Mortality Within the R Environment: The Constrained Segmented Distributed Lag Parameterization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i12).
    18. Binbing Yu & Lan Huang & Ram C. Tiwari & Eric J. Feuer & Karen A. Johnson, 2009. "Modelling population‐based cancer survival trends by using join point models for grouped survival data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 405-425, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0061495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.