IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0055547.html
   My bibliography  Save this article

Can Global Weed Assemblages Be Used to Predict Future Weeds?

Author

Listed:
  • Louise Morin
  • Dean R Paini
  • Roderick P Randall

Abstract

Predicting which plant taxa are more likely to become weeds in a region presents significant challenges to both researchers and government agencies. Often it is done in a qualitative or semi-quantitative way. In this study, we explored the potential of using the quantitative self-organising map (SOM) approach to analyse global weed assemblages and estimate likelihoods of plant taxa becoming weeds before and after they have been moved to a new region. The SOM approach examines plant taxa associations by analysing where a taxon is recorded as a weed and what other taxa are recorded as weeds in those regions. The dataset analysed was extracted from a pre-existing, extensive worldwide database of plant taxa recorded as weeds or other related status and, following reformatting, included 187 regions and 6690 plant taxa. To assess the value of the SOM approach we selected Australia as a case study. We found that the key and most important limitation in using such analytical approach lies with the dataset used. The classification of a taxon as a weed in the literature is not often based on actual data that document the economic, environmental and/or social impact of the taxon, but mostly based on human perceptions that the taxon is troublesome or simply not wanted in a particular situation. The adoption of consistent and objective criteria that incorporate a standardized approach for impact assessment of plant taxa will be necessary to develop a new global database suitable to make predictions regarding weediness using methods like SOM. It may however, be more realistic to opt for a classification system that focuses on the invasive characteristics of plant taxa without any inference to impacts, which to be defined would require some level of research to avoid bias from human perceptions and value systems.

Suggested Citation

  • Louise Morin & Dean R Paini & Roderick P Randall, 2013. "Can Global Weed Assemblages Be Used to Predict Future Weeds?," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-10, February.
  • Handle: RePEc:plo:pone00:0055547
    DOI: 10.1371/journal.pone.0055547
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055547
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0055547&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0055547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pimentel, David & Zuniga, Rodolfo & Morrison, Doug, 2005. "Update on the environmental and economic costs associated with alien-invasive species in the United States," Ecological Economics, Elsevier, vol. 52(3), pages 273-288, February.
    2. Dean R. Paini & Susan P. Worner & David C. Cook & Paul J. De Barro & Matthew B. Thomas, 2010. "Threat of invasive pests from within national borders," Nature Communications, Nature, vol. 1(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    2. Xubin Pan & Jingqiu Zhang & Han Xu & Xianglin Zhang & Wei Zhang & Huahai Song & Shuifang Zhu, 2015. "Spatial similarity in the distribution of invasive alien plants and animals in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1751-1764, July.
    3. Travis Warziniack & David Finnoff & Jonathan Bossenbroek & Jason Shogren & David Lodge, 2011. "Stepping Stones for Biological Invasion: A Bioeconomic Model of Transferable Risk," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(4), pages 605-627, December.
    4. Blackwood, Julie & Hastings, Alan & Costello, Christopher, 2010. "Cost-effective management of invasive species using linear-quadratic control," Ecological Economics, Elsevier, vol. 69(3), pages 519-527, January.
    5. Cook, David & Proctor, Wendy, 2007. "Assessing the threat of exotic plant pests," Ecological Economics, Elsevier, vol. 63(2-3), pages 594-604, August.
    6. Mirko Di Febbraro & Peter W W Lurz & Piero Genovesi & Luigi Maiorano & Marco Girardello & Sandro Bertolino, 2013. "The Use of Climatic Niches in Screening Procedures for Introduced Species to Evaluate Risk of Spread: A Case with the American Eastern Grey Squirrel," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    7. Colvin, Michael E. & Pierce, Clay L. & Stewart, Timothy W., 2015. "A food web modeling analysis of a Midwestern, USA eutrophic lake dominated by non-native Common Carp and Zebra Mussels," Ecological Modelling, Elsevier, vol. 312(C), pages 26-40.
    8. Beça, Pedro & Santos, Rui, 2010. "Measuring sustainable welfare: A new approach to the ISEW," Ecological Economics, Elsevier, vol. 69(4), pages 810-819, February.
    9. Don Driscoll & Adam Felton & Philip Gibbons & Annika Felton & Nicola Munro & David Lindenmayer, 2012. "Priorities in policy and management when existing biodiversity stressors interact with climate-change," Climatic Change, Springer, vol. 111(3), pages 533-557, April.
    10. Liu, Yanxu & Sims, Charles, 2016. "Spatial-dynamic externalities and coordination in invasive species control," Resource and Energy Economics, Elsevier, vol. 44(C), pages 23-38.
    11. Jones, Kristin Roti & Corona, Joel P., 2008. "An ambient tax approach to invasive species," Ecological Economics, Elsevier, vol. 64(3), pages 534-541, January.
    12. Sinden, John Alfred & Griffith, Garry, 2007. "Combining economic and ecological arguments to value the environmental gains from control of 35 weeds in Australia," Ecological Economics, Elsevier, vol. 61(2-3), pages 396-408, March.
    13. Gabriele Soriano & Mónica Fernández-Aparicio & Marco Masi & Susana Vilariño-Rodríguez & Alessio Cimmino, 2022. "Complex Mixture of Arvensic Acids Isolated from Convolvulus arvensis Roots Identified as Inhibitors of Radicle Growth of Broomrape Weeds," Agriculture, MDPI, vol. 12(5), pages 1-10, April.
    14. Zapata, Samuel D. & Dudensing, Rebekka & Sekula, Danielle & Esparza-Díaz, Gabriela & Villanueva, Raul, 2018. "Economic Impact Of The Sugarcane Aphid Outbreak In South Texas," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 50(1), pages 104-128, February.
    15. Hlasny, Vladimir & Livingston, Michael J., 2008. "Economic Determinants of Invasion and Discovery of Nonindigenous Insects," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 40(1), pages 1-16, April.
    16. Giaccaria Sergio & Dalmazzone Silvana, 2010. "Socio-economic drivers of biological invasions. A worldwide, bio-geographical analysis of trade flows and local environmental quality," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201003, University of Turin.
    17. Parshad, Rana D. & Wickramsooriya, Sureni & Bailey, Susan, 2020. "A remark on “Biological control through provision of additional food to predators: A theoretical study†[Theor. Popul. Biol. 72 (2007) 111–120]," Theoretical Population Biology, Elsevier, vol. 132(C), pages 60-68.
    18. Antonio Moreno-Robles & Antonio Cala Peralta & Gabriele Soriano & Jesús G. Zorrilla & Marco Masi & Susana Vilariño-Rodríguez & Alessio Cimmino & Mónica Fernández-Aparicio, 2022. "Identification of Allelochemicals with Differential Modes of Phytotoxicity against Cuscuta campestris," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    19. Horsch, Eric J. & Lewis, David J., 2008. "The Effects of Aquatic Invasive Species on Property Values: Evidence from a Quasi-Random Experiment," Staff Papers 92216, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    20. Cook, David C., 2008. "Benefit cost analysis of an import access request," Food Policy, Elsevier, vol. 33(3), pages 277-285, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0055547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.