IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0049716.html
   My bibliography  Save this article

An Integrative Computational Framework Based on a Two-Step Random Forest Algorithm Improves Prediction of Zinc-Binding Sites in Proteins

Author

Listed:
  • Cheng Zheng
  • Mingjun Wang
  • Kazuhiro Takemoto
  • Tatsuya Akutsu
  • Ziding Zhang
  • Jiangning Song

Abstract

Zinc-binding proteins are the most abundant metalloproteins in the Protein Data Bank where the zinc ions usually have catalytic, regulatory or structural roles critical for the function of the protein. Accurate prediction of zinc-binding sites is not only useful for the inference of protein function but also important for the prediction of 3D structure. Here, we present a new integrative framework that combines multiple sequence and structural properties and graph-theoretic network features, followed by an efficient feature selection to improve prediction of zinc-binding sites. We investigate what information can be retrieved from the sequence, structure and network levels that is relevant to zinc-binding site prediction. We perform a two-step feature selection using random forest to remove redundant features and quantify the relative importance of the retrieved features. Benchmarking on a high-quality structural dataset containing 1,103 protein chains and 484 zinc-binding residues, our method achieved >80% recall at a precision of 75% for the zinc-binding residues Cys, His, Glu and Asp on 5-fold cross-validation tests, which is a 10%-28% higher recall at the 75% equal precision compared to SitePredict and zincfinder at residue level using the same dataset. The independent test also indicates that our method has achieved recall of 0.790 and 0.759 at residue and protein levels, respectively, which is a performance better than the other two methods. Moreover, AUC (the Area Under the Curve) and AURPC (the Area Under the Recall-Precision Curve) by our method are also respectively better than those of the other two methods. Our method can not only be applied to large-scale identification of zinc-binding sites when structural information of the target is available, but also give valuable insights into important features arising from different levels that collectively characterize the zinc-binding sites. The scripts and datasets are available at http://protein.cau.edu.cn/zincidentifier/.

Suggested Citation

  • Cheng Zheng & Mingjun Wang & Kazuhiro Takemoto & Tatsuya Akutsu & Ziding Zhang & Jiangning Song, 2012. "An Integrative Computational Framework Based on a Two-Step Random Forest Algorithm Improves Prediction of Zinc-Binding Sites in Proteins," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-15, November.
  • Handle: RePEc:plo:pone00:0049716
    DOI: 10.1371/journal.pone.0049716
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049716
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0049716&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0049716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiangning Song & Hao Tan & Mingjun Wang & Geoffrey I Webb & Tatsuya Akutsu, 2012. "TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-16, February.
    2. Yizhou Li & Gongbing Li & Zhining Wen & Hui Yin & Mei Hu & Jiamin Xiao & Menglong Li, 2011. "Novel Feature for Catalytic Protein Residues Reflecting Interactions with Other Residues," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-9, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huilin Wang & Mingjun Wang & Hao Tan & Yuan Li & Ziding Zhang & Jiangning Song, 2014. "PredPPCrys: Accurate Prediction of Sequence Cloning, Protein Production, Purification and Crystallization Propensity from Protein Sequences Using Multi-Step Heterogeneous Feature Fusion and Selection," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivan Kalev & Michael Habeck, 2013. "Confidence-Guided Local Structure Prediction with HHfrag," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-7, October.
    2. Harinder Singh & Sandeep Singh & Gajendra P S Raghava, 2014. "Evaluation of Protein Dihedral Angle Prediction Methods," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-9, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0049716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.