IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0048653.html
   My bibliography  Save this article

Genome-Wide Association Study Heterogeneous Cohort Homogenization via Subject Weight Knock-Down

Author

Listed:
  • André X C N Valente
  • Joseph Zischkau
  • Joo Heon Shin
  • Yuan Gao
  • Abhijit Sarkar

Abstract

Population structure can be a source of both false-positive and false-negative findings in a genome-wide association study. This article proposes an approach that helps to reduce the false-positives. It consists of homogenizing the diseased/healthy phenotype ratio across the cohort, by decreasing the statistical weight of selected individuals. After homogenization, the cohort is statistically handled as if originating from a single well-mixed population. The method was applied to homogenize a Parkinson's disease genome-wide association study cohort.

Suggested Citation

  • André X C N Valente & Joseph Zischkau & Joo Heon Shin & Yuan Gao & Abhijit Sarkar, 2012. "Genome-Wide Association Study Heterogeneous Cohort Homogenization via Subject Weight Knock-Down," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-10, October.
  • Handle: RePEc:plo:pone00:0048653
    DOI: 10.1371/journal.pone.0048653
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048653
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0048653&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0048653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. Devlin & Kathryn Roeder, 1999. "Genomic Control for Association Studies," Biometrics, The International Biometric Society, vol. 55(4), pages 997-1004, December.
    2. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    3. Jun Zhang & Partha Niyogi & Mary Sara McPeek, 2009. "Laplacian Eigenfunctions Learn Population Structure," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilja M Nolte & Chris Wallace & Stephen J Newhouse & Daryl Waggott & Jingyuan Fu & Nicole Soranzo & Rhian Gwilliam & Panos Deloukas & Irina Savelieva & Dongling Zheng & Chrysoula Dalageorgou & Martin F, 2009. "Common Genetic Variation Near the Phospholamban Gene Is Associated with Cardiac Repolarisation: Meta-Analysis of Three Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-10, July.
    2. Hoicheong Siu & Li Jin & Momiao Xiong, 2012. "Manifold Learning for Human Population Structure Studies," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-18, January.
    3. Zhao Huaqing & Rebbeck Timothy R. & Mitra Nandita, 2012. "Analyzing Genetic Association Studies with an Extended Propensity Score Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-24, October.
    4. Peristera Paschou & Petros Drineas & Jamey Lewis & Caroline M Nievergelt & Deborah A Nickerson & Joshua D Smith & Paul M Ridker & Daniel I Chasman & Ronald M Krauss & Elad Ziv, 2008. "Tracing Sub-Structure in the European American Population with PCA-Informative Markers," PLOS Genetics, Public Library of Science, vol. 4(7), pages 1-13, July.
    5. Kai Yu & Zhaoming Wang & Qizhai Li & Sholom Wacholder & David J Hunter & Robert N Hoover & Stephen Chanock & Gilles Thomas, 2008. "Population Substructure and Control Selection in Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-14, July.
    6. Marie-Claude Babron & Marie de Tayrac & Douglas N Rutledge & Eleftheria Zeggini & Emmanuelle Génin, 2012. "Rare and Low Frequency Variant Stratification in the UK Population: Description and Impact on Association Tests," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    7. Ning Jiang & Minghui Wang & Tianye Jia & Lin Wang & Lindsey Leach & Christine Hackett & David Marshall & Zewei Luo, 2011. "A Robust Statistical Method for Association-Based eQTL Analysis," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    8. Thomas Charlon & Manuel Martínez-Bueno & Lara Bossini-Castillo & F David Carmona & Alessandro Di Cara & Jérôme Wojcik & Sviatoslav Voloshynovskiy & Javier Martín & Marta E Alarcón-Riquelme, 2016. "Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-10, August.
    9. Li, Zhaohai & Zhang, Hong & Zheng, Gang & Gastwirth, Joseph L. & Gail, Mitchell H., 2009. "Excess false positive rate caused by population stratification and disease rate heterogeneity in case-control association studies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1767-1781, March.
    10. Zhao Huaqing & Mitra Nandita & Kanetsky Peter A. & Nathanson Katherine L. & Rebbeck Timothy R., 2018. "A practical approach to adjusting for population stratification in genome-wide association studies: principal components and propensity scores (PCAPS)," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(6), pages 1-12, December.
    11. Lei Zhang & Yu-Fang Pei & Jian Li & Christopher J Papasian & Hong-Wen Deng, 2009. "Univariate/Multivariate Genome-Wide Association Scans Using Data from Families and Unrelated Samples," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-12, August.
    12. Dominic Holland & Oleksandr Frei & Rahul Desikan & Chun-Chieh Fan & Alexey A Shadrin & Olav B Smeland & V S Sundar & Paul Thompson & Ole A Andreassen & Anders M Dale, 2020. "Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-30, May.
    13. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    15. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    16. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Parsa Akbari & Dragana Vuckovic & Luca Stefanucci & Tao Jiang & Kousik Kundu & Roman Kreuzhuber & Erik L. Bao & Janine H. Collins & Kate Downes & Luigi Grassi & Jose A. Guerrero & Stephen Kaptoge & Ju, 2023. "A genome-wide association study of blood cell morphology identifies cellular proteins implicated in disease aetiology," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    18. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    19. Felsenstein, Joseph, 2015. "Covariation of gene frequencies in a stepping-stone lattice of populations," Theoretical Population Biology, Elsevier, vol. 100(C), pages 88-97.
    20. Gang Zheng & Zhaohai Li & Mitchell H. Gail & Joseph L. Gastwirth, 2010. "Impact of Population Substructure on Trend Tests for Genetic Case–Control Association Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 196-204, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0048653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.