IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0047951.html
   My bibliography  Save this article

Accurate Prediction of Protein Catalytic Residues by Side Chain Orientation and Residue Contact Density

Author

Listed:
  • Yu-Tung Chien
  • Shao-Wei Huang

Abstract

Prediction of protein catalytic residues provides useful information for the studies of protein functions. Most of the existing methods combine both structure and sequence information but heavily rely on sequence conservation from multiple sequence alignments. The contribution of structure information is usually less than that of sequence conservation in existing methods. We found a novel structure feature, residue side chain orientation, which is the first structure-based feature that achieves prediction results comparable to that of evolutionary sequence conservation. We developed a structure-based method, Enzyme Catalytic residue SIde-chain Arrangement (EXIA), which is based on residue side chain orientations and backbone flexibility of protein structure. The prediction that uses EXIA outperforms existing structure-based features. The prediction quality of combing EXIA and sequence conservation exceeds that of the state-of-the-art prediction methods. EXIA is designed to predict catalytic residues from single protein structure without needing sequence or structure alignments. It provides invaluable information when there is no sufficient or reliable homology information for target protein. We found that catalytic residues have very special side chain orientation and designed the EXIA method based on the newly discovered feature. It was also found that EXIA performs well for a dataset of enzymes without any bounded ligand in their crystallographic structures.

Suggested Citation

  • Yu-Tung Chien & Shao-Wei Huang, 2012. "Accurate Prediction of Protein Catalytic Residues by Side Chain Orientation and Residue Contact Density," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
  • Handle: RePEc:plo:pone00:0047951
    DOI: 10.1371/journal.pone.0047951
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047951
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0047951&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0047951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenxu Tong & Ying Wei & Leonel F Murga & Mary Jo Ondrechen & Ronald J Williams, 2009. "Partial Order Optimum Likelihood (POOL): Maximum Likelihood Prediction of Protein Active Site Residues Using 3D Structure and Sequence Properties," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Marino Buslje & Elin Teppa & Tomas Di Doménico & José María Delfino & Morten Nielsen, 2010. "Networks of High Mutual Information Define the Structural Proximity of Catalytic Sites: Implications for Catalytic Residue Identification," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-8, November.
    2. John A Capra & Roman A Laskowski & Janet M Thornton & Mona Singh & Thomas A Funkhouser, 2009. "Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-18, December.
    3. Yongchao Dou & Jun Wang & Jialiang Yang & Chi Zhang, 2012. "L1pred: A Sequence-Based Prediction Tool for Catalytic Residues in Enzymes with the L1-logreg Classifier," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0047951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.