IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000978.html
   My bibliography  Save this article

Networks of High Mutual Information Define the Structural Proximity of Catalytic Sites: Implications for Catalytic Residue Identification

Author

Listed:
  • Cristina Marino Buslje
  • Elin Teppa
  • Tomas Di Doménico
  • José María Delfino
  • Morten Nielsen

Abstract

Identification of catalytic residues (CR) is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI), and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA) database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL) conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI) was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC) was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls), combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.Author Summary: Enzymes are responsible for several critical cellular functions. The so-called catalytic residues are fundamental to attain the enzyme function. Those residues are often highly conserved within protein families sharing similar structure and function. Characterization of catalytic residues is essential for the understanding of enzyme function. However, this is a difficult task because conservation is a poor discriminator of catalytic residues due to the fact that many non-catalytic residues are highly conserved in a given protein family. We anticipate that variations in the structural environment of a catalytic site should be highly restrained in order for the protein to maintain its function along the course of evolution, and hypothesise that catalytic residues, due to these restrains, must carry a particular signature defined by networks of proximity sharing high mutual information (MI). We validated this hypothesis on a large data set of protein sequences with known catalytic residues, and demonstrated that catalytic sites are indeed surrounded by networks of coevolved residues. Such networks should also be present in other classes of proteins and we suggest that MI networks could be a novel feature of general importance beneficial for the prediction of functional residues.

Suggested Citation

  • Cristina Marino Buslje & Elin Teppa & Tomas Di Doménico & José María Delfino & Morten Nielsen, 2010. "Networks of High Mutual Information Define the Structural Proximity of Catalytic Sites: Implications for Catalytic Residue Identification," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-8, November.
  • Handle: RePEc:plo:pcbi00:1000978
    DOI: 10.1371/journal.pcbi.1000978
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000978
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000978&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wenxu Tong & Ying Wei & Leonel F Murga & Mary Jo Ondrechen & Ronald J Williams, 2009. "Partial Order Optimum Likelihood (POOL): Maximum Likelihood Prediction of Protein Active Site Residues Using 3D Structure and Sequence Properties," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongchao Dou & Jun Wang & Jialiang Yang & Chi Zhang, 2012. "L1pred: A Sequence-Based Prediction Tool for Catalytic Residues in Enzymes with the L1-logreg Classifier," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Tung Chien & Shao-Wei Huang, 2012. "Accurate Prediction of Protein Catalytic Residues by Side Chain Orientation and Residue Contact Density," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    2. John A Capra & Roman A Laskowski & Janet M Thornton & Mona Singh & Thomas A Funkhouser, 2009. "Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-18, December.
    3. Yongchao Dou & Jun Wang & Jialiang Yang & Chi Zhang, 2012. "L1pred: A Sequence-Based Prediction Tool for Catalytic Residues in Enzymes with the L1-logreg Classifier," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.