IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0047718.html
   My bibliography  Save this article

Consistent Strategy Updating in Spatial and Non-Spatial Behavioral Experiments Does Not Promote Cooperation in Social Networks

Author

Listed:
  • Jelena Grujić
  • Torsten Röhl
  • Dirk Semmann
  • Manfred Milinski
  • Arne Traulsen

Abstract

The presence of costly cooperation between otherwise selfish actors is not trivial. A prominent mechanism that promotes cooperation is spatial population structure. However, recent experiments with human subjects report substantially lower level of cooperation then predicted by theoretical models. We analyze the data of such an experiment in which a total of 400 players play a Prisoner's Dilemma on a square lattice in two treatments, either interacting via a fixed square lattice (15 independent groups) or with a population structure changing after each interaction (10 independent groups). We analyze the statistics of individual decisions and infer in which way they can be matched with the typical models of evolutionary game theorists. We find no difference in the strategy updating between the two treatments. However, the strategy updates are distinct from the most popular models which lead to the promotion of cooperation as shown by computer simulations of the strategy updating. This suggests that the promotion of cooperation by population structure is not as straightforward in humans as often envisioned in theoretical models.

Suggested Citation

  • Jelena Grujić & Torsten Röhl & Dirk Semmann & Manfred Milinski & Arne Traulsen, 2012. "Consistent Strategy Updating in Spatial and Non-Spatial Behavioral Experiments Does Not Promote Cooperation in Social Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
  • Handle: RePEc:plo:pone00:0047718
    DOI: 10.1371/journal.pone.0047718
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047718
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0047718&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0047718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Blume Lawrence E., 1993. "The Statistical Mechanics of Strategic Interaction," Games and Economic Behavior, Elsevier, vol. 5(3), pages 387-424, July.
    2. Cassar, Alessandra, 2007. "Coordination and cooperation in local, random and small world networks: Experimental evidence," Games and Economic Behavior, Elsevier, vol. 58(2), pages 209-230, February.
    3. Jelena Grujić & Constanza Fosco & Lourdes Araujo & José A Cuesta & Angel Sánchez, 2010. "Social Experiments in the Mesoscale: Humans Playing a Spatial Prisoner's Dilemma," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    4. Ilan Eshel & Larry Samuelson & Avner Shaked, "undated". "Altruists Egoists and Hooligans in a Local Interaction Model," ELSE working papers 005, ESRC Centre on Economics Learning and Social Evolution.
    5. Eshel, Ilan & Samuelson, Larry & Shaked, Avner, 1998. "Altruists, Egoists, and Hooligans in a Local Interaction Model," American Economic Review, American Economic Association, vol. 88(1), pages 157-179, March.
    6. Simon Gachter & Ernst Fehr, 2000. "Cooperation and Punishment in Public Goods Experiments," American Economic Review, American Economic Association, vol. 90(4), pages 980-994, September.
    7. Dirk Helbing & Attila Szolnoki & Matjaž Perc & György Szabó, 2010. "Evolutionary Establishment of Moral and Double Moral Standards through Spatial Interactions," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-9, April.
    8. Coren L. Apicella & Frank W. Marlowe & James H. Fowler & Nicholas A. Christakis, 2012. "Social networks and cooperation in hunter-gatherers," Nature, Nature, vol. 481(7382), pages 497-501, January.
    9. Siddharth Suri & Duncan J Watts, 2011. "Cooperation and Contagion in Web-Based, Networked Public Goods Experiments," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-18, March.
    10. Jeromos Vukov & Francisco C Santos & Jorge M Pacheco, 2011. "Incipient Cognition Solves the Spatial Reciprocity Conundrum of Cooperation," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-5, March.
    11. Kirchkamp, Oliver & Nagel, Rosemarie, 2007. "Naive learning and cooperation in network experiments," Games and Economic Behavior, Elsevier, vol. 58(2), pages 269-292, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Faqi & Fu, Feng, 2013. "Quantifying the impact of noise on macroscopic organization of cooperation in spatial games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 35-44.
    2. Takahiro Ezaki & Naoki Masuda, 2017. "Reinforcement learning account of network reciprocity," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-8, December.
    3. Jillian J Jordan & David G Rand & Samuel Arbesman & James H Fowler & Nicholas A Christakis, 2013. "Contagion of Cooperation in Static and Fluid Social Networks," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-10, June.
    4. Tim Johnson & Oleg Smirnov, 2020. "Temporal assortment of cooperators in the spatial prisoner's dilemma," Papers 2011.14440, arXiv.org.
    5. Yali Dong & Cong Li & Yi Tao & Boyu Zhang, 2015. "Evolution of Conformity in Social Dilemmas," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-12, September.
    6. Tamas David-Barrett, 2022. "Clustering Drives Cooperation on Reputation Networks, All Else Fixed," Papers 2203.00372, arXiv.org.
    7. Takahiro Ezaki & Yutaka Horita & Masanori Takezawa & Naoki Masuda, 2016. "Reinforcement Learning Explains Conditional Cooperation and Its Moody Cousin," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-13, July.
    8. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    9. Yutaka Horita, 2020. "Greater effects of mutual cooperation and defection on subsequent cooperation in direct reciprocity games than generalized reciprocity games: Behavioral experiments and analysis using multilevel model," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    10. John Realpe-Gómez & Daniele Vilone & Giulia Andrighetto & Luis G. Nardin & Javier A. Montoya, 2018. "Learning Dynamics and Norm Psychology Supports Human Cooperation in a Large-Scale Prisoner’s Dilemma on Networks," Games, MDPI, vol. 9(4), pages 1-14, November.
    11. Jia, Danyang & Li, Tong & Zhao, Yang & Zhang, Xiaoqin & Wang, Zhen, 2022. "Empty nodes affect conditional cooperation under reinforcement learning," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    12. Perc, Matjaž & Grigolini, Paolo, 2013. "Collective behavior and evolutionary games – An introduction," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 1-5.
    13. Isabel Cristina Panziera Marques & Mário Franco, 2020. "Cooperation networks in the area of health: systematic literature review," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1727-1750, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:use:tkiwps:2424 is not listed on IDEAS
    2. Rosenkranz, Stephanie & Weitzel, Utz, 2012. "Network structure and strategic investments: An experimental analysis," Games and Economic Behavior, Elsevier, vol. 75(2), pages 898-920.
    3. Fosco, Constanza & Mengel, Friederike, 2011. "Cooperation through imitation and exclusion in networks," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 641-658, May.
    4. Milena Tsvetkova & Claudia Wagner & Andrew Mao, 2018. "The emergence of inequality in social groups: Network structure and institutions affect the distribution of earnings in cooperation games," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-16, July.
    5. Tsvetkova, Milena & Wagner, Claudia & Mao, Andrew, 2018. "The emergence of inequality in social groups: network structure and institutions affect the distribution of earnings in cooperation games," LSE Research Online Documents on Economics 89716, London School of Economics and Political Science, LSE Library.
    6. Yali Dong & Cong Li & Yi Tao & Boyu Zhang, 2015. "Evolution of Conformity in Social Dilemmas," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-12, September.
    7. Siddharth Suri & Duncan J Watts, 2011. "Cooperation and Contagion in Web-Based, Networked Public Goods Experiments," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-18, March.
    8. Martin Daniel Siyaranamual, 2015. "Are Results of Social- and Self-Image Concerns in Voluntary Contributions Game Similar?," Working Papers in Economics and Development Studies (WoPEDS) 201501, Department of Economics, Padjadjaran University, revised Feb 2015.
    9. repec:ehu:ikerla:9171 is not listed on IDEAS
    10. Gary Charness & Francesco Feri & Miguel A. Meléndez-Jiménez & Matthias Sutter, 2023. "An Experimental Study on the Effects of Communication, Credibility, and Clustering in Network Games," The Review of Economics and Statistics, MIT Press, vol. 105(6), pages 1530-1543, November.
    11. Floriana Gargiulo & José J Ramasco, 2012. "Influence of Opinion Dynamics on the Evolution of Games," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    12. Cordes, Christian & Richerson, Peter J. & McElreath, Richard & Strimling, Pontus, 2008. "A naturalistic approach to the theory of the firm: The role of cooperation and cultural evolution," Journal of Economic Behavior & Organization, Elsevier, vol. 68(1), pages 125-139, October.
    13. Alós-Ferrer, Carlos & Weidenholzer, Simon, 2014. "Imitation and the role of information in overcoming coordination failures," Games and Economic Behavior, Elsevier, vol. 87(C), pages 397-411.
    14. Takahiro Ezaki & Naoki Masuda, 2017. "Reinforcement learning account of network reciprocity," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-8, December.
    15. Frey Vincenz & Corten Rense & Buskens Vincent, 2012. "Equilibrium Selection in Network Coordination Games: An Experimental Study," Review of Network Economics, De Gruyter, vol. 11(3), pages 1-28, September.
    16. Alós-Ferrer, Carlos & Weidenholzer, Simon, 2008. "Contagion and efficiency," Journal of Economic Theory, Elsevier, vol. 143(1), pages 251-274, November.
    17. Hsiao-Chi Chen & Yunshyong Chow & Li-Chau Wu, 2013. "Imitation, local interaction, and coordination," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 1041-1057, November.
    18. Luo-Luo Jiang & Matjaž Perc & Attila Szolnoki, 2013. "If Cooperation Is Likely Punish Mildly: Insights from Economic Experiments Based on the Snowdrift Game," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-7, May.
    19. Angelo Antoci & Luca Zarri, 2015. "Punish and perish?," Rationality and Society, , vol. 27(2), pages 195-223, May.
    20. Rense Corten & Stephanie Rosenkranz & Vincent Buskens & Karen S Cook, 2016. "Reputation Effects in Social Networks Do Not Promote Cooperation: An Experimental Test of the Raub & Weesie Model," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-17, July.
    21. Joëlle Noailly & Jeroen Bergh & Cees Withagen, 2009. "Local and Global Interactions in an Evolutionary Resource Game," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 155-173, March.
    22. Ge Jiang & Simon Weidenholzer, 2017. "Local interactions under switching costs," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(3), pages 571-588, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0047718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.