IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0047606.html
   My bibliography  Save this article

Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts

Author

Listed:
  • Tom J Van Grootel
  • Robert F Van der Willigen
  • A John Van Opstal

Abstract

How the brain maintains an accurate and stable representation of visual target locations despite the occurrence of saccadic gaze shifts is a classical problem in oculomotor research. Here we test and dissociate the predictions of different conceptual models for head-unrestrained gaze-localization behavior of macaque monkeys. We adopted the double-step paradigm with rapid eye-head gaze shifts to measure localization accuracy in response to flashed visual stimuli in darkness. We presented the second target flash either before (static), or during (dynamic) the first gaze displacement. In the dynamic case the brief visual flash induced a small retinal streak of up to about 20 deg at an unpredictable moment and retinal location during the eye-head gaze shift, which provides serious challenges for the gaze-control system. However, for both stimulus conditions, monkeys localized the flashed targets with accurate gaze shifts, which rules out several models of visuomotor control. First, these findings exclude the possibility that gaze-shift programming relies on retinal inputs only. Instead, they support the notion that accurate eye-head motor feedback updates the gaze-saccade coordinates. Second, in dynamic trials the visuomotor system cannot rely on the coordinates of the planned first eye-head saccade either, which rules out remapping on the basis of a predictive corollary gaze-displacement signal. Finally, because gaze-related head movements were also goal-directed, requiring continuous access to eye-in-head position, we propose that our results best support a dynamic feedback scheme for spatial updating in which visuomotor control incorporates accurate signals about instantaneous eye- and head positions rather than relative eye- and head displacements.

Suggested Citation

  • Tom J Van Grootel & Robert F Van der Willigen & A John Van Opstal, 2012. "Experimental Test of Spatial Updating Models for Monkey Eye-Head Gaze Shifts," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-18, October.
  • Handle: RePEc:plo:pone00:0047606
    DOI: 10.1371/journal.pone.0047606
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0047606
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0047606&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0047606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc A. Sommer & Robert H. Wurtz, 2006. "Influence of the thalamus on spatial visual processing in frontal cortex," Nature, Nature, vol. 444(7117), pages 374-377, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaiser Niknam & Amir Akbarian & Kelsey Clark & Yasin Zamani & Behrad Noudoost & Neda Nategh, 2019. "Characterizing and dissociating multiple time-varying modulatory computations influencing neuronal activity," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-38, September.
    2. Amir Akbarian & Kelsey Clark & Behrad Noudoost & Neda Nategh, 2021. "A sensory memory to preserve visual representations across eye movements," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0047606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.