IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0046363.html
   My bibliography  Save this article

Inappropriate Fiddling with Statistical Analyses to Obtain a Desirable P-value: Tests to Detect its Presence in Published Literature

Author

Listed:
  • Gary L Gadbury
  • David B Allison

Abstract

Much has been written regarding p-values below certain thresholds (most notably 0.05) denoting statistical significance and the tendency of such p-values to be more readily publishable in peer-reviewed journals. Intuition suggests that there may be a tendency to manipulate statistical analyses to push a “near significant p-value” to a level that is considered significant. This article presents a method for detecting the presence of such manipulation (herein called “fiddling”) in a distribution of p-values from independent studies. Simulations are used to illustrate the properties of the method. The results suggest that the method has low type I error and that power approaches acceptable levels as the number of p-values being studied approaches 1000.

Suggested Citation

  • Gary L Gadbury & David B Allison, 2012. "Inappropriate Fiddling with Statistical Analyses to Obtain a Desirable P-value: Tests to Detect its Presence in Published Literature," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
  • Handle: RePEc:plo:pone00:0046363
    DOI: 10.1371/journal.pone.0046363
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046363
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0046363&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0046363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Allison, David B. & Gadbury, Gary L. & Heo, Moonseong & Fernandez, Jose R. & Lee, Cheol-Koo & Prolla, Tomas A. & Weindruch, Richard, 2002. "A mixture model approach for the analysis of microarray gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parrish, Rudolph S. & Spencer III, Horace J. & Xu, Ping, 2009. "Distribution modeling and simulation of gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1650-1660, March.
    2. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    3. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    4. He, Yi & Pan, Wei & Lin, Jizhen, 2006. "Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 641-658, November.
    5. Lin Zhang & Inyoung Kim, 2021. "Finite mixtures of semiparametric Bayesian survival kernel machine regressions: Application to breast cancer gene pathway subgroup analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 251-269, March.
    6. Cheng, Cheng, 2009. "Internal validation inferences of significant genomic features in genome-wide screening," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 788-800, January.
    7. Robert R. Delongchamp & John F. Bowyer & James J. Chen & Ralph L. Kodell, 2004. "Multiple-Testing Strategy for Analyzing cDNA Array Data on Gene Expression," Biometrics, The International Biometric Society, vol. 60(3), pages 774-782, September.
    8. Xiang, Qinfang & Edwards, Jode & Gadbury, Gary L., 2006. "Interval estimation in a finite mixture model: Modeling P-values in multiple testing applications," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 570-586, November.
    9. Charnigo, Richard & Fan, Qian & Bittel, Douglas & Dai, Hongying, 2013. "Testing unilateral versus bilateral normal contamination," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 163-167.
    10. Shigeyuki Matsui & Shu Zeng & Takeharu Yamanaka & John Shaughnessy, 2008. "Sample Size Calculations Based on Ranking and Selection in Microarray Experiments," Biometrics, The International Biometric Society, vol. 64(1), pages 217-226, March.
    11. Yongqiang Tang & Subhashis Ghosal & Anindya Roy, 2007. "Nonparametric Bayesian Estimation of Positive False Discovery Rates," Biometrics, The International Biometric Society, vol. 63(4), pages 1126-1134, December.
    12. Miecznikowski, Jeffrey C. & Gold, David & Shepherd, Lori & Liu, Song, 2011. "Deriving and comparing the distribution for the number of false positives in single step methods to control k-FWER," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1695-1705, November.
    13. David R. Bickel, 2013. "Minimax-Optimal Strength of Statistical Evidence for a Composite Alternative Hypothesis," International Statistical Review, International Statistical Institute, vol. 81(2), pages 188-206, August.
    14. Yu, Chang & Zelterman, Daniel, 2017. "A parametric model to estimate the proportion from true null using a distribution for p-values," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 105-118.
    15. Makariou, Despoina & Barrieu, Pauline & Tzougas, George, 2021. "A finite mixture modelling perspective for combining experts’ opinions with an application to quantile-based risk measures," LSE Research Online Documents on Economics 110763, London School of Economics and Political Science, LSE Library.
    16. Hunt, Daniel L. & Cheng, Cheng & Pounds, Stanley, 2009. "The beta-binomial distribution for estimating the number of false rejections in microarray gene expression studies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1688-1700, March.
    17. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.
    18. Muir, W.M. & Rosa, G.J.M. & Pittendrigh, B.R. & Xu, Z. & Rider, S.D. & Fountain, M. & Ogas, J., 2009. "A mixture model approach for the analysis of small exploratory microarray experiments," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1566-1576, March.
    19. Andrew Y. Chen, 2022. "Do t-Statistic Hurdles Need to be Raised?," Papers 2204.10275, arXiv.org, revised Apr 2024.
    20. Marot Guillemette & Mayer Claus-Dieter, 2009. "Sequential Analysis for Microarray Data Based on Sensitivity and Meta-Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-35, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0046363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.