IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0045027.html
   My bibliography  Save this article

Dynamics of a Cytokine Storm

Author

Listed:
  • Hao Hong Yiu
  • Andrea L Graham
  • Robert F Stengel

Abstract

Six volunteers experienced severe inflammatory response during the Phase I clinical trial of a monoclonal antibody that was designed to stimulate a regulatory T cell response. Soon after the trial began, each volunteer experienced a “cytokine storm”, a dramatic increase in cytokine concentrations. The monoclonal antibody, TGN1412, raised serum concentrations of both pro- and anti-inflammatory cytokines το very hiγh values during the first day, while lymphocyte and monocyte concentrations plummeted. Because the subjects were healthy and had no prior indications of immune deficiency, this event provided an unusual opportunity to study the dynamic interactions of cytokines and other measured parameters. Here, the response histories of nine cytokines have been modeled by a set of linear ordinary differential equations. A general search procedure identifies parameters of the model, whose response fits the data well during the five-day measurement period. The eighteenth-order model reveals plausible cause-and-effect relationships among the cytokines, showing how each cytokine induces or inhibits other cytokines. It suggests that perturbations in IL2, IL8, and IL10 have the most significant inductive effect, while IFN-γ and IL12 have the greatest inhibiting effect on other cytokine concentrations. Although TNF-α is a major pro-inflammatory factor, IFN-γ and three other cytokines have faster initial and median response to TGN1412 infusion. Principal-component analysis of the data reveals three clusters of similar cytokine responses: [TNF-α, IL1, IL10], [IFN-γ, IL2, IL4, IL8, and IL12], and [IL6]. IL1, IL6, IL10, and TNF-α have the highest degree of variability in response to uncertain initial conditions, exogenous effects, and parameter estimates. This study illuminates details of a cytokine storm event, and it demonstrates the value of linear modeling for interpreting complex, coupled biological system dynamics from empirical data.

Suggested Citation

  • Hao Hong Yiu & Andrea L Graham & Robert F Stengel, 2012. "Dynamics of a Cytokine Storm," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-15, October.
  • Handle: RePEc:plo:pone00:0045027
    DOI: 10.1371/journal.pone.0045027
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045027
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0045027&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0045027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Cohen, 2002. "The immunopathogenesis of sepsis," Nature, Nature, vol. 420(6917), pages 885-891, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tristram A. J. Ryan & Alexander Hooftman & Aisling M. Rehill & Matt D. Johansen & Eóin C. O’ Brien & Juliana E. Toller-Kawahisa & Mieszko M. Wilk & Emily A. Day & Hauke J. Weiss & Pourya Sarvari & Emi, 2023. "Dimethyl fumarate and 4-octyl itaconate are anticoagulants that suppress Tissue Factor in macrophages via inhibition of Type I Interferon," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0045027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.