IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0043425.html
   My bibliography  Save this article

Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier

Author

Listed:
  • Xing Chen
  • Ming-Xi Liu
  • Qing-Hua Cui
  • Gui-Ying Yan

Abstract

Accumulated evidence has shown that microRNAs (miRNAs) can functionally interact with a number of environmental factors (EFs) and their interactions critically affect phenotypes and diseases. Therefore, in-silico inference of disease-related miRNA-EF interactions is becoming crucial not only for the understanding of the mechanisms by which miRNAs and EFs contribute to disease, but also for disease diagnosis, treatment, and prognosis. In this paper, we analyzed the human miRNA-EF interaction data and revealed that miRNAs (EFs) with similar functions tend to interact with similar EFs (miRNAs) in the context of a given disease, which suggests a potential way to expand the current relation space of miRNAs, EFs, and diseases. Based on this observation, we further proposed a semi-supervised classifier based method (miREFScan) to predict novel disease-related interactions between miRNAs and EFs. As a result, the leave-one-out cross validation has shown that miREFScan obtained an AUC of 0.9564, indicating that miREFScan has a reliable performance. Moreover, we applied miREFScan to predict acute promyelocytic leukemia-related miRNA-EF interactions. The result shows that forty-nine of the top 1% predictions have been confirmed by experimental literature. In addition, using miREFScan we predicted and publicly released novel miRNA-EF interactions for 97 human diseases. Finally, we believe that miREFScan would be a useful bioinformatic resource for the research about the relationships among miRNAs, EFs, and human diseases.

Suggested Citation

  • Xing Chen & Ming-Xi Liu & Qing-Hua Cui & Gui-Ying Yan, 2012. "Prediction of Disease-Related Interactions between MicroRNAs and Environmental Factors Based on a Semi-Supervised Classifier," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.
  • Handle: RePEc:plo:pone00:0043425
    DOI: 10.1371/journal.pone.0043425
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043425
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0043425&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0043425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael J. Keiser & Vincent Setola & John J. Irwin & Christian Laggner & Atheir I. Abbas & Sandra J. Hufeisen & Niels H. Jensen & Michael B. Kuijer & Roberto C. Matos & Thuy B. Tran & Ryan Whaley & Ri, 2009. "Predicting new molecular targets for known drugs," Nature, Nature, vol. 462(7270), pages 175-181, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Shen & You-Hua Zhang & Kyungsook Han & Asoke K. Nandi & Barry Honig & De-Shuang Huang, 2017. "miRNA-Disease Association Prediction with Collaborative Matrix Factorization," Complexity, Hindawi, vol. 2017, pages 1-9, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-Sheng Cao & Yi-Zeng Liang & Zhe Deng & Qian-Nan Hu & Min He & Qing-Song Xu & Guang-Hua Zhou & Liu-Xia Zhang & Zi-xin Deng & Shao Liu, 2013. "Genome-Scale Screening of Drug-Target Associations Relevant to Ki Using a Chemogenomics Approach," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-12, April.
    2. Richard D Smith & Jing Lu & Heather A Carlson, 2017. "Are there physicochemical differences between allosteric and competitive ligands?," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-18, November.
    3. Bin Chen & Ying Ding & David J Wild, 2012. "Assessing Drug Target Association Using Semantic Linked Data," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-10, July.
    4. Zheng Hong, 2019. "A novel individualized drug repositioning approach for predicting personalized candidate drugs for type 1 diabetes mellitus," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-9, October.
    5. Rafael R. S. Guimaraes, 2022. "Deep Learning Macroeconomics," Papers 2201.13380, arXiv.org.
    6. Kejian Wang & Jiazhi Sun & Shufeng Zhou & Chunling Wan & Shengying Qin & Can Li & Lin He & Lun Yang, 2013. "Prediction of Drug-Target Interactions for Drug Repositioning Only Based on Genomic Expression Similarity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-9, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0043425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.