IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0043384.html
   My bibliography  Save this article

Nitrogen Addition Regulates Soil Nematode Community Composition through Ammonium Suppression

Author

Listed:
  • Cunzheng Wei
  • Huifen Zheng
  • Qi Li
  • Xiaotao Lü
  • Qiang Yu
  • Haiyang Zhang
  • Quansheng Chen
  • Nianpeng He
  • Paul Kardol
  • Wenju Liang
  • Xingguo Han

Abstract

Nitrogen (N) enrichment resulting from anthropogenic activities has greatly changed the composition and functioning of soil communities. Nematodes are one of the most abundant and diverse groups of soil organisms, and they occupy key trophic positions in the soil detritus food web. Nematodes have therefore been proposed as useful indicators for shifts in soil ecosystem functioning under N enrichment. Here, we monitored temporal dynamics of the soil nematode community using a multi-level N addition experiment in an Inner Mongolia grassland. Measurements were made three years after the start of the experiment. We used structural equation modeling (SEM) to explore the mechanisms regulating nematode responses to N enrichment. Across the N enrichment gradient, significant reductions in total nematode abundance, diversity (H' and taxonomic richness), maturity index (MI), and the abundance of root herbivores, fungivores and omnivores-predators were found in August. Root herbivores recovered in September, contributing to the temporal variation of total nematode abundance across the N gradient. Bacterivores showed a hump-shaped relationship with N addition rate, both in August and September. Ammonium concentration was negatively correlated with the abundance of total and herbivorous nematodes in August, but not in September. Ammonium suppression explained 61% of the variation in nematode richness and 43% of the variation in nematode trophic group composition. Ammonium toxicity may occur when herbivorous nematodes feed on root fluid, providing a possible explanation for the negative relationship between herbivorous nematodes and ammonium concentration in August. We found a significantly positive relationship between fungivores and fungal phospholipid fatty acids (PLFA), suggesting bottom-up control of fungivores. No such relationship was found between bacterivorous nematodes and bacterial PLFA. Our findings contribute to the understanding of effects of N enrichment in semiarid grassland on soil nematode trophic groups, and the cascading effects in the detrital soil food web.

Suggested Citation

  • Cunzheng Wei & Huifen Zheng & Qi Li & Xiaotao Lü & Qiang Yu & Haiyang Zhang & Quansheng Chen & Nianpeng He & Paul Kardol & Wenju Liang & Xingguo Han, 2012. "Nitrogen Addition Regulates Soil Nematode Community Composition through Ammonium Suppression," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
  • Handle: RePEc:plo:pone00:0043384
    DOI: 10.1371/journal.pone.0043384
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043384
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0043384&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0043384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yongfei Bai & Xingguo Han & Jianguo Wu & Zuozhong Chen & Linghao Li, 2004. "Ecosystem stability and compensatory effects in the Inner Mongolia grassland," Nature, Nature, vol. 431(7005), pages 181-184, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    2. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    3. Jingyi Dong & Liming Tian & Jiaqi Zhang & Yinghui Liu & Haiyan Li & Qi Dong, 2022. "Grazing Intensity Has More Effect on the Potential Nitrification Activity Than the Potential Denitrification Activity in An Alpine Meadow," Agriculture, MDPI, vol. 12(10), pages 1-17, September.
    4. Mouldi Gamoun & Mounir Louhaichi, 2021. "Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia," Land, MDPI, vol. 10(3), pages 1-12, March.
    5. Wen Wang & Huamin Liu & Jinghui Zhang & Zhiyong Li & Lixin Wang & Zheng Wang & Yantao Wu & Yang Wang & Cunzhu Liang, 2020. "Effect of Grazing Types on Community-Weighted Mean Functional Traits and Ecosystem Functions on Inner Mongolian Steppe, China," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    6. Saruul Kang & Wenjing Ma & Frank Yonghong Li & Qing Zhang & Jianming Niu & Yong Ding & Fang Han & Xiaoli Sun, 2015. "Functional Redundancy Instead of Species Redundancy Determines Community Stability in a Typical Steppe of Inner Mongolia," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-11, December.
    7. Yang Liu & Qing Zhang & Qingfu Liu & Yongzhi Yan & Wanxin Hei & Deyong Yu & Jianguo Wu, 2020. "Different Household Livelihood Strategies and Influencing Factors in the Inner Mongolian Grassland," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    8. Xuefeng Zhang & Jianming Niu & Alexander Buyantuev & Qing Zhang & Jianjun Dong & Sarula Kang & Jing Zhang, 2016. "Understanding Grassland Degradation and Restoration from the Perspective of Ecosystem Services: A Case Study of the Xilin River Basin in Inner Mongolia, China," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
    9. Xiuli Gao & Shihai Lv & Zhaoyan Diao & Dewang Wang & Daikui Li & Zhirong Zheng, 2023. "Responses of Vegetation, Soil, and Microbes and Carbon and Nitrogen Pools to Semiarid Grassland Land-Use Patterns in Duolun, Inner Mongolia, China," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    10. Ahmed Ibrahim Ahmed & Lulu Hou & Ruirui Yan & Xiaoping Xin & Yousif Mohamed Zainelabdeen, 2020. "The Joint Effect of Grazing Intensity and Soil Factors on Aboveground Net Primary Production in Hulunber Grasslands Meadow Steppe," Agriculture, MDPI, vol. 10(7), pages 1-19, July.
    11. Devan Allen McGranahan, 2014. "Ecologies of Scale: Multifunctionality Connects Conservation and Agriculture across Fields, Farms, and Landscapes," Land, MDPI, vol. 3(3), pages 1-31, July.
    12. Xiaomin Lv & Guangsheng Zhou, 2018. "Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    13. Bingzhen Du & Lin Zhen & Huimin Yan & Rudolf De Groot, 2016. "Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China," Sustainability, MDPI, vol. 8(12), pages 1-18, December.
    14. Juan Hu & Daowei Zhou & Qiang Li & Qicun Wang, 2020. "Vertical Distributions of Soil Nutrients and Their Stoichiometric Ratios as Affected by Long Term Grazing and Enclosing in a Semi-Arid Grassland of Inner Mongolia," Agriculture, MDPI, vol. 10(9), pages 1-13, August.
    15. He, Huayun & Chen, Chao & Li, Qiuyue & Guo, Bin & Hu, Qi & Zhang, Lina & Pang, Yanmei, 2024. "Combining CENTURY model and vulnerability assessment index to estimate aboveground biomass and ecological vulnerability of grassland: An analysis in Northwest Sichuan Plateau," Ecological Modelling, Elsevier, vol. 493(C).
    16. Yintai Na & Saixiyalt Bao & Kanji Hashimoto & Christopher McCarthy & Buho Hoshino, 2018. "The Effects of Grazing Systems on Plant Communities in Steppe Lands—A Case Study from Mongolia’s Pastoralists and Inner Mongolian Settlement Areas," Land, MDPI, vol. 7(1), pages 1-10, January.
    17. Rakefet Shafran-Nathan & Tal Svoray & Avi Perevolotsky, 2013. "The resilience of annual vegetation primary production subjected to different climate change scenarios," Climatic Change, Springer, vol. 118(2), pages 227-243, May.
    18. Yali Li & Guoxing He & Xiaoni Liu & Heguang Xu & Tong Ji & Dong Lin & Jiachang Jiang, 2024. "Distribution Characteristics of Carbon Density in Plant–Soil System of Temperate Steppe and Temperate Desert in the Longzhong Loess Plateau," Agriculture, MDPI, vol. 14(2), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0043384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.