IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0041452.html
   My bibliography  Save this article

Rule-Based Modeling of Chronic Disease Epidemiology: Elderly Depression as an Illustration

Author

Listed:
  • Jean-Christophe Chiêm
  • Jean Macq
  • Niko Speybroeck

Abstract

Background: Rule-based Modeling (RBM) is a computer simulation modeling methodology already used to model infectious diseases. Extending this technique to the assessment of chronic diseases, mixing quantitative and qualitative data appear to be a promising alternative to classical methods. Elderly depression reveals an important source of comorbidities. Yet, the intertwined relationship between late-life events and the social support of the elderly person remains difficult to capture. We illustrate the usefulness of RBM in modeling chronic diseases using the example of elderly depression in Belgium. Methods: We defined a conceptual framework of interactions between late-life events and social support impacting elderly depression. This conceptual framework was underpinned by experts' opinions elicited through a questionnaire. Several scenarios were implemented successively to better mimic the real population, and to explore a treatment effect and a socio-economic distinction. The simulated patterns of depression by age were compared with empirical patterns retrieved from the Belgian Health Interview Survey. Results: Simulations were run using different groupings of experts' opinions on the parameters. The results indicate that the conceptual framework can reflect a realistic evolution of the prevalence of depression. Indeed, simulations combining the opinions of well-selected experts and a treatment effect showed no significant difference with the empirical pattern. Conclusions: Our conceptual framework together with a quantification of parameters through elicited expert opinions improves the insights into possible dynamics driving elderly depression. While RBM does not require high-level skill in mathematics or computer programming, the whole implementation process provides a powerful tool to learn about complex chronic diseases, combining advantages of both quantitative and qualitative approaches.

Suggested Citation

  • Jean-Christophe Chiêm & Jean Macq & Niko Speybroeck, 2012. "Rule-Based Modeling of Chronic Disease Epidemiology: Elderly Depression as an Illustration," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-14, August.
  • Handle: RePEc:plo:pone00:0041452
    DOI: 10.1371/journal.pone.0041452
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041452
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0041452&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0041452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bruce Edmonds, 2010. "Bootstrapping Knowledge About Social Phenomena Using Simulation Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(1), pages 1-8.
    2. Robert Axelrod, 1997. "Advancing the Art of Simulation in the Social Sciences," Working Papers 97-05-048, Santa Fe Institute.
    3. Subramanian, S.V. & Elwert, Felix & Christakis, Nicholas, 2008. "Widowhood and mortality among the elderly: The modifying role of neighborhood concentration of widowed individuals," Social Science & Medicine, Elsevier, vol. 66(4), pages 873-884, February.
    4. Fred Collopy & J. Scott Armstrong, 1992. "Rule-Based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations," Management Science, INFORMS, vol. 38(10), pages 1394-1414, October.
    5. Joshua M. Epstein, 2009. "Modelling to contain pandemics," Nature, Nature, vol. 460(7256), pages 687-687, August.
    6. Jones, A.P. & Homer, J.B. & Murphy, D.L. & Essien, J.D.K. & Milstein, B. & Seville, D.A. & Barnes, K., 2006. "Understanding diabetes population dynamics through simulation modeling and experimentation," American Journal of Public Health, American Public Health Association, vol. 96(3), pages 488-494.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. G.J. Melman & A.K. Parlikad & E.A.B. Cameron, 2021. "Balancing scarce hospital resources during the COVID-19 pandemic using discrete-event simulation," Health Care Management Science, Springer, vol. 24(2), pages 356-374, June.
    3. Matteo Richiardi, 2003. "The Promises and Perils of Agent-Based Computational Economics," LABORatorio R. Revelli Working Papers Series 29, LABORatorio R. Revelli, Centre for Employment Studies.
    4. Vivek Shastry & D Cale Reeves & Nicholas Willems & Varun Rai, 2022. "Policy and behavioral response to shock events: An agent-based model of the effectiveness and equity of policy design features," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-21, January.
    5. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    6. Armstrong, J. Scott & Collopy, Fred & Yokum, J. Thomas, 2005. "Decomposition by causal forces: a procedure for forecasting complex time series," International Journal of Forecasting, Elsevier, vol. 21(1), pages 25-36.
    7. Günter Küppers & Johannes Lenhard, 2005. "Validation of Simulation: Patterns in the Social and Natural Sciences," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(4), pages 1-3.
    8. Andrew W. Bausch, 2014. "Evolving intergroup cooperation," Computational and Mathematical Organization Theory, Springer, vol. 20(4), pages 369-393, December.
    9. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    10. Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
    11. Hedström, Peter & Wennberg, Karl, 2016. "Causal Mechanisms in Organization and Innovation Studies," Ratio Working Papers 284, The Ratio Institute.
    12. Fildes, Robert & Petropoulos, Fotios, 2015. "Simple versus complex selection rules for forecasting many time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1692-1701.
    13. Mohamed Gaber & Edward J. Lusk, 2019. "A Vetting Protocol for the Analytical Procedures Platform for the AP-Phase of PCAOB Audits," Accounting and Finance Research, Sciedu Press, vol. 8(4), pages 1-43, November.
    14. Vincent O. Omwenga & Vaishnav Madhumati & Kumar Vinay & Sathyanarayan Srikanta & Navakanta Bhat, 2023. "Mathematical Modelling of Combined Intervention Strategies for the Management and Control of Plasma Glucose of a Diabetes Mellitus Patient: A System Dynamic Modelling Approach," Mathematics, MDPI, vol. 11(2), pages 1-17, January.
    15. Edward J. Lusk, 2019. "Time Series Forecasting in Stock Trading Markets: The Turning Point Curiosity," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 8(4), pages 01-16, July.
    16. Giannoccaro, Ilaria, 2015. "Adaptive supply chains in industrial districts: A complexity science approach focused on learning," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 576-589.
    17. Vinay Singh & Bhasker Choubey & Stephan Sauer, 2024. "Liquidity forecasting at corporate and subsidiary levels using machine learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(3), September.
    18. Elaine O Nsoesie & Richard J Beckman & Madhav V Marathe, 2012. "Sensitivity Analysis of an Individual-Based Model for Simulation of Influenza Epidemics," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-16, October.
    19. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    20. Pietro Terna, 2000. "Sum: A Surprising (Un)Realistic Market - Building A Simple Stock Market Structure With Swarm," Computing in Economics and Finance 2000 173, Society for Computational Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0041452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.