IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0038016.html
   My bibliography  Save this article

Dietary Acrylamide Intake and the Risk of Lymphatic Malignancies: The Netherlands Cohort Study on Diet and Cancer

Author

Listed:
  • Mathilda L Bongers
  • Janneke G F Hogervorst
  • Leo J Schouten
  • R Alexandra Goldbohm
  • Harry C Schouten
  • Piet A van den Brandt

Abstract

Background: Acrylamide, a probable human carcinogen, is present in many everyday foods. Since the finding of its presence in foods in 2002, epidemiological studies have found some suggestive associations between dietary acrylamide exposure and the risk of various cancers. The aim of this prospective study is to investigate for the first time the association between dietary acrylamide intake and the risk of several histological subtypes of lymphatic malignancies. Methods: The Netherlands Cohort Study on diet and cancer includes 120,852 men and women followed-up since September 1986. The number of person years at risk was estimated by using a random sample of participants from the total cohort that was chosen at baseline (n = 5,000). Acrylamide intake was estimated from a food frequency questionnaire combined with acrylamide data for Dutch foods. Hazard ratios (HRs) were calculated for acrylamide intake as a continuous variable as well as in categories (quintiles and tertiles), for men and women separately and for never-smokers, using multivariable-adjusted Cox proportional hazards models. Results: After 16.3 years of follow-up, 1,233 microscopically confirmed cases of lymphatic malignancies were available for multivariable-adjusted analysis. For multiple myeloma and follicular lymphoma, HRs for men were 1.14 (95% CI: 1.01, 1.27) and 1.28 (95% CI: 1.03, 1.61) per 10 µg acrylamide/day increment, respectively. For never-smoking men, the HR for multiple myeloma was 1.98 (95% CI: 1.38, 2.85). No associations were observed for women. Conclusion: We found indications that acrylamide may increase the risk of multiple myeloma and follicular lymphoma in men. This is the first epidemiological study to investigate the association between dietary acrylamide intake and the risk of lymphatic malignancies, and more research into these observed associations is warranted.

Suggested Citation

  • Mathilda L Bongers & Janneke G F Hogervorst & Leo J Schouten & R Alexandra Goldbohm & Harry C Schouten & Piet A van den Brandt, 2012. "Dietary Acrylamide Intake and the Risk of Lymphatic Malignancies: The Netherlands Cohort Study on Diet and Cancer," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
  • Handle: RePEc:plo:pone00:0038016
    DOI: 10.1371/journal.pone.0038016
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038016
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0038016&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0038016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christine F Skibola & Paige M Bracci & Eran Halperin & Alexandra Nieters & Alan Hubbard & Randi A Paynter & Danica R Skibola & Luz Agana & Nikolaus Becker & Patrick Tressler & Matthew S Forrest & Srir, 2008. "Polymorphisms in the Estrogen Receptor 1 and Vitamin C and Matrix Metalloproteinase Gene Families Are Associated with Susceptibility to Lymphoma," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-12, July.
    2. Donald S. Mottram & Bronislaw L. Wedzicha & Andrew T. Dodson, 2002. "Acrylamide is formed in the Maillard reaction," Nature, Nature, vol. 419(6906), pages 448-449, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kanokwan Chancharoenchai & Wuthiya Saraithong, 2022. "Sustainable Development of Cassava Value Chain through the Promotion of Locally Sourced Chips," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    2. Joanna Michalak & Marta Czarnowska-Kujawska & Elżbieta Gujska, 2019. "Acrylamide and Thermal-Processing Indexes in Market-Purchased Food," IJERPH, MDPI, vol. 16(23), pages 1-9, November.
    3. Laura V. Freeland & Dylan W. Phillips & Huw D. Jones, 2024. "Precision Breeding and Consumer Safety: A Review of Regulations for UK Markets," Agriculture, MDPI, vol. 14(8), pages 1-18, August.
    4. K. Kukurová & Z. Ciesarová & A. Bednáriková & L. Marková, 2009. "Effect of Inorganic Salts on Acrylamide Formation in Cereal Matrices," Czech Journal of Food Sciences, Czech Academy of Agricultural Sciences, vol. 27(SpecialIs), pages 425-428.
    5. Enda Cummins & Francis Butler & Ronan Gormley & Nigel Brunton, 2009. "A Monte Carlo Risk Assessment Model for Acrylamide Formation in French Fries," Risk Analysis, John Wiley & Sons, vol. 29(10), pages 1410-1426, October.
    6. Nga L. Tran & Leila M. Barraj & Susan Collinge, 2017. "Reduction in Dietary Acrylamide Exposure—Impact of Potatoes with Low Acrylamide Potential," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1754-1767, September.
    7. Yong-Hong Chen & En-Qin Xia & Xiang-Rong Xu & Wen-Hua Ling & Sha Li & Shan Wu & Gui-Fang Deng & Zhi-Fei Zou & Jing Zhou & Hua-Bin Li, 2012. "Evaluation of Acrylamide in Food from China by a LC/MS/MS Method," IJERPH, MDPI, vol. 9(11), pages 1-9, November.
    8. Agnieszka Makowska & Dorota Cais-Sokolińska & Agnieszka Waśkiewicz & Grzegorz Tokarczyk & Hanna Paschke, 2016. "Quality and nutritional properties of corn snacks enriched with nanofiltered whey powder," Czech Journal of Food Sciences, Czech Academy of Agricultural Sciences, vol. 34(2), pages 154-159.
    9. Karolina Miśkiewicz & Ewa Nebesny & Joanna Oracz, 2012. "Formation of acrylamide during baking of shortcrust cookies derived from various flours," Czech Journal of Food Sciences, Czech Academy of Agricultural Sciences, vol. 30(1), pages 53-56.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0038016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.