IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0037274.html
   My bibliography  Save this article

Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube

Author

Listed:
  • Jun Niu
  • Ceji Fu
  • Wenchang Tan

Abstract

The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared.

Suggested Citation

  • Jun Niu & Ceji Fu & Wenchang Tan, 2012. "Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0037274
    DOI: 10.1371/journal.pone.0037274
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037274
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0037274&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0037274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter A. Thompson & Sandra M. Troian, 1997. "A general boundary condition for liquid flow at solid surfaces," Nature, Nature, vol. 389(6649), pages 360-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anand, Vishal, 2014. "Slip law effects on heat transfer and entropy generation of pressure driven flow of a power law fluid in a microchannel under uniform heat flux boundary condition," Energy, Elsevier, vol. 76(C), pages 716-732.
    2. Haroon Ur Rasheed & Zeeshan Khan & Saeed Islam & Ilyas Khan & Juan L. G. Guirao & Waris Khan, 2019. "Investigation of Two-Dimensional Viscoelastic Fluid with Nonuniform Heat Generation over Permeable Stretching Sheet with Slip Condition," Complexity, Hindawi, vol. 2019, pages 1-8, December.
    3. Wu, Yong Hong & Wiwatanapataphee, B. & Hu, Maobin, 2008. "Pressure-driven transient flows of Newtonian fluids through microtubes with slip boundary," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 5979-5990.
    4. Yunmin Ran & Volfango Bertola, 2024. "Achievements and Prospects of Molecular Dynamics Simulations in Thermofluid Sciences," Energies, MDPI, vol. 17(4), pages 1-30, February.
    5. Aurore Quelennec & Jason J. Gorman & Darwin R. Reyes, 2022. "Amontons-Coulomb-like slip dynamics in acousto-microfluidics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Jing Zhu & Jiahui Cao, 2019. "Effects of Nanolayer and Second Order Slip on Unsteady Nanofluid Flow Past a Wedge," Mathematics, MDPI, vol. 7(11), pages 1-13, November.
    7. Rahmatipour, Hamed & Azimian, Ahmad-Reza & Atlaschian, Omid, 2017. "Study of fluid flow behavior in smooth and rough nanochannels through oscillatory wall by molecular dynamics simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 159-174.
    8. Balaram Kundu & Sujit Saha, 2022. "Review and Analysis of Electro-Magnetohydrodynamic Flow and Heat Transport in Microchannels," Energies, MDPI, vol. 15(19), pages 1-51, September.
    9. Jafarimoghaddam, A. & Roşca, N.C. & Roşca, A.V. & Pop, I., 2021. "The universal Blasius problem: New results by Duan–Rach Adomian Decomposition Method with Jafarimoghaddam contraction mapping theorem and numerical solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 60-76.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0037274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.