IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0035082.html
   My bibliography  Save this article

Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

Author

Listed:
  • Laura J Vimmerstedt
  • Brian Bush
  • Steve Peterson

Abstract

The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain–represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner’s decision whether to offer ethanol fuel and a consumer’s choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

Suggested Citation

  • Laura J Vimmerstedt & Brian Bush & Steve Peterson, 2012. "Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0035082
    DOI: 10.1371/journal.pone.0035082
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035082
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0035082&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0035082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bidhan Bhuson Roy & Qingshi Tu, 2022. "A review of system dynamics modeling for the sustainability assessment of biorefineries," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1450-1459, August.
    2. Newes, Emily & Clark, Christopher M. & Vimmerstedt, Laura & Peterson, Steve & Burkholder, Dallas & Korotney, David & Inman, Daniel, 2022. "Ethanol production in the United States: The roles of policy, price, and demand," Energy Policy, Elsevier, vol. 161(C).
    3. Franco, Carlos J. & Zapata, Sebastian & Dyner, Isaac, 2015. "Simulation for assessing the liberalization of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 298-307.
    4. Jahani, Hamed & Gholizadeh, Hadi & Hayati, Zahra & Fazlollahtabar, Hamed, 2023. "Investment risk assessment of the biomass-to-energy supply chain using system dynamics," Renewable Energy, Elsevier, vol. 203(C), pages 554-567.
    5. Sang-Bing Tsai & Min-Fang Chien & Youzhi Xue & Lei Li & Xiaodong Jiang & Quan Chen & Jie Zhou & Lei Wang, 2015. "Using the Fuzzy DEMATEL to Determine Environmental Performance: A Case of Printed Circuit Board Industry in Taiwan," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-18, June.
    6. Ramos-Hernández, Rocío & Sánchez-Ramírez, Cuauhtémoc & Mota-López, Dulce Rocio & Sandoval-Salas, Fabiola & García-Alcaraz, Jorge Luis, 2021. "Evaluation of bioenergy potential from coffee pulp trough System Dynamics," Renewable Energy, Elsevier, vol. 165(P1), pages 863-877.
    7. Zhong, Jia & Khanna, Madhu & Chen, Xiaoguang, 2017. "Going Beyond the Blend Wall: Policy Incentives for Fuel Consumers to Supplement the Renewable Fuel Standard," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258483, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar Gutiérrez & Francisco Ruiz-Aliseda, 2011. "Real options with unknown-date events," Annals of Finance, Springer, vol. 7(2), pages 171-198, May.
    2. Shari, Babajide Epe & Dioha, Michael O. & Abraham-Dukuma, Magnus C. & Sobanke, Victor O. & Emodi, Nnaemeka V., 2022. "Clean cooking energy transition in Nigeria: Policy implications for Developing countries," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 319-343.
    3. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    4. Tiruwork B. Tibebu & Eric Hittinger & Qing Miao & Eric Williams, 2024. "Adoption Model Choice Affects the Optimal Subsidy for Residential Solar," Energies, MDPI, vol. 17(3), pages 1-19, February.
    5. Simon P. Anderson & André de Palma, 2012. "Competition for attention in the Information (overload) Age," RAND Journal of Economics, RAND Corporation, vol. 43(1), pages 1-25, March.
    6. Van, Tien Linh Cao & Barthelmes, Lukas & Gnann, Till & Speth, Daniel & Kagerbauer, Martin, 2021. "Addressing the gaps in market diffusion modeling of electrical vehicles: A case study from Germany for the integration of environmental policy measures," Working Papers "Sustainability and Innovation" S05/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    7. Ma, Peng, 2021. "Optimal generic and brand advertising efforts in a decentralized supply chain considering customer surplus," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    8. Sergio Currarini & Carmen Marchiori & Alessandro Tavoni, 2016. "Network Economics and the Environment: Insights and Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(1), pages 159-189, September.
    9. Klingler, Anna-Lena & Luthander, Rasmus, 2018. "Market diffusion of residential PV and battery systems driven by self-consumption: A comparison of Sweden and Germany," Working Papers "Sustainability and Innovation" S18/2018, Fraunhofer Institute for Systems and Innovation Research (ISI).
    10. Robertson, Alastair & Soopramanien, Didier & Fildes, Robert, 2007. "A segment-based analysis of Internet service adoption among UK households," Technology in Society, Elsevier, vol. 29(3), pages 339-350.
    11. Edgardo Arturo Ayala Gaytán, 2009. "Social network externalities and price dispersion in online markets," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 1-28, November.
    12. Liberali, Guilherme & Gruca, Thomas S. & Nique, Walter M., 2011. "The effects of sensitization and habituation in durable goods markets," European Journal of Operational Research, Elsevier, vol. 212(2), pages 398-410, July.
    13. Chul-Yong Lee & Jongsu Lee, 2009. "Demand Forecasting in the Early Stage of the Technology's Life Cycle Using Bayesian update," TEMEP Discussion Papers 200903, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Apr 2009.
    14. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2017. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Working Papers hal-01592958, HAL.
    15. Yanwen Wang & Chunhua Wu & Ting Zhu, 2019. "Mobile Hailing Technology and Taxi Driving Behaviors," Marketing Science, INFORMS, vol. 38(5), pages 734-755, September.
    16. Jakob Grazzini & Matteo G. Richiardi & Lisa Sella, 2013. "Analysis of Agent-based Models," LABORatorio R. Revelli Working Papers Series 135, LABORatorio R. Revelli, Centre for Employment Studies.
    17. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. White, Reilly & Marinakis, Yorgos & Islam, Nazrul & Walsh, Steven, 2020. "Is Bitcoin a currency, a technology-based product, or something else?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    19. Shigeno, Hidenori & Matsuzaki, Taisuke & Ueki, Yasushi & Tsuji, Masatsugu, 2023. "The Effect of the Covid-19 Pandemic on the Innovation Process of Small and Medium-sized Regional Firms," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 278018, International Telecommunications Society (ITS).
    20. Sohn, So Young & Lim, Michael, 2008. "The effect of forecasting and information sharing in SCM for multi-generation products," European Journal of Operational Research, Elsevier, vol. 186(1), pages 276-287, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0035082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.