IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0032502.html
   My bibliography  Save this article

Visual Feature Integration Indicated by pHase-Locked Frontal-Parietal EEG Signals

Author

Listed:
  • Steven Phillips
  • Yuji Takeda
  • Archana Singh

Abstract

The capacity to integrate multiple sources of information is a prerequisite for complex cognitive ability, such as finding a target uniquely identifiable by the conjunction of two or more features. Recent studies identified greater frontal-parietal synchrony during conjunctive than non-conjunctive (feature) search. Whether this difference also reflects greater information integration, rather than just differences in cognitive strategy (e.g., top-down versus bottom-up control of attention), or task difficulty is uncertain. Here, we examine the first possibility by parametrically varying the number of integrated sources from one to three and measuring phase-locking values (PLV) of frontal-parietal EEG electrode signals, as indicators of synchrony. Linear regressions, under hierarchical false-discovery rate control, indicated significant positive slopes for number of sources on PLV in the 30–38 Hz, 175–250 ms post-stimulus frequency-time band for pairs in the sagittal plane (i.e., F3-P3, Fz-Pz, F4-P4), after equating conditions for behavioural performance (to exclude effects due to task difficulty). No such effects were observed for pairs in the transverse plane (i.e., F3-F4, C3-C4, P3-P4). These results provide support for the idea that anterior-posterior phase-locking in the lower gamma-band mediates integration of visual information. They also provide a potential window into cognitive development, seen as developing the capacity to integrate more sources of information.

Suggested Citation

  • Steven Phillips & Yuji Takeda & Archana Singh, 2012. "Visual Feature Integration Indicated by pHase-Locked Frontal-Parietal EEG Signals," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
  • Handle: RePEc:plo:pone00:0032502
    DOI: 10.1371/journal.pone.0032502
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032502
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0032502&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0032502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yekutieli, Daniel, 2008. "Hierarchical False Discovery RateControlling Methodology," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 309-316, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.
    2. Ferreira José A. & Berkhof Johannes & Souverein Olga & Zwinderman Koos, 2009. "A Multiple Testing Approach to High-Dimensional Association Studies with an Application to the Detection of Associations between Risk Factors of Heart Disease and Genetic Polymorphisms," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-58, January.
    3. Anders Bredahl Kock & David Preinerstorfer, 2021. "Superconsistency of Tests in High Dimensions," Papers 2106.03700, arXiv.org, revised Jan 2022.
    4. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    5. Chang, Chiu-Lan & Cai, Qingyun, 2023. "Stock return anomalies identification during the Covid-19 with the application of a grouped multiple comparison procedure," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 168-183.
    6. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    7. Cai, Qingyun, 2018. "A scoring criterion for rejection of clustered p-values," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 180-189.
    8. Rina Foygel Barber & Aaditya Ramdas, 2017. "The p-filter: multilayer false discovery rate control for grouped hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1247-1268, September.
    9. Goeman Jelle J. & Finos Livio, 2012. "The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-18, January.
    10. Antoine Bichat & Christophe Ambroise & Mahendra Mariadassou, 2022. "Hierarchical correction of p-values via an ultrametric tree running Ornstein-Uhlenbeck process," Computational Statistics, Springer, vol. 37(3), pages 995-1013, July.
    11. Ruth Heller, 2020. "Comments on: Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 51-55, March.
    12. Leah H. Palm-Forster & Paul J. Ferraro & Nicholas Janusch & Christian A. Vossler & Kent D. Messer, 2019. "Behavioral and Experimental Agri-Environmental Research: Methodological Challenges, Literature Gaps, and Recommendations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(3), pages 719-742, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0032502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.