IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0029491.html
   My bibliography  Save this article

Predicting Biological Functions of Compounds Based on Chemical-Chemical Interactions

Author

Listed:
  • Le-Le Hu
  • Chen Chen
  • Tao Huang
  • Yu-Dong Cai
  • Kuo-Chen Chou

Abstract

Given a compound, how can we effectively predict its biological function? It is a fundamentally important problem because the information thus obtained may benefit the understanding of many basic biological processes and provide useful clues for drug design. In this study, based on the information of chemical-chemical interactions, a novel method was developed that can be used to identify which of the following eleven metabolic pathway classes a query compound may be involved with: (1) Carbohydrate Metabolism, (2) Energy Metabolism, (3) Lipid Metabolism, (4) Nucleotide Metabolism, (5) Amino Acid Metabolism, (6) Metabolism of Other Amino Acids, (7) Glycan Biosynthesis and Metabolism, (8) Metabolism of Cofactors and Vitamins, (9) Metabolism of Terpenoids and Polyketides, (10) Biosynthesis of Other Secondary Metabolites, (11) Xenobiotics Biodegradation and Metabolism. It was observed that the overall success rate obtained by the method via the 5-fold cross-validation test on a benchmark dataset consisting of 3,137 compounds was 77.97%, which is much higher than 10.45%, the corresponding success rate obtained by the random guesses. Besides, to deal with the situation that some compounds may be involved with more than one metabolic pathway class, the method presented here is featured by the capacity able to provide a series of potential metabolic pathway classes ranked according to the descending order of their likelihood for each of the query compounds concerned. Furthermore, our method was also applied to predict 5,549 compounds whose metabolic pathway classes are unknown. Interestingly, the results thus obtained are quite consistent with the deductions from the reports by other investigators. It is anticipated that, with the continuous increase of the chemical-chemical interaction data, the current method will be further enhanced in its power and accuracy, so as to become a useful complementary vehicle in annotating uncharacterized compounds for their biological functions.

Suggested Citation

  • Le-Le Hu & Chen Chen & Tao Huang & Yu-Dong Cai & Kuo-Chen Chou, 2011. "Predicting Biological Functions of Compounds Based on Chemical-Chemical Interactions," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-9, December.
  • Handle: RePEc:plo:pone00:0029491
    DOI: 10.1371/journal.pone.0029491
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029491
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0029491&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0029491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yiannis A I Kourmpetis & Aalt D J van Dijk & Marco C A M Bink & Roeland C H J van Ham & Cajo J F ter Braak, 2010. "Bayesian Markov Random Field Analysis for Protein Function Prediction Based on Network Data," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-10, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Chen & Jing Lu & Jian Zhang & Kai-Rui Feng & Ming-Yue Zheng & Yu-Dong Cai, 2013. "Predicting Chemical Toxicity Effects Based on Chemical-Chemical Interactions," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    2. Yu-Fei Gao & Lei Chen & Yu-Dong Cai & Kai-Yan Feng & Tao Huang & Yang Jiang, 2012. "Predicting Metabolic Pathways of Small Molecules and Enzymes Based on Interaction Information of Chemicals and Proteins," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Chen & Jing Lu & Jian Zhang & Kai-Rui Feng & Ming-Yue Zheng & Yu-Dong Cai, 2013. "Predicting Chemical Toxicity Effects Based on Chemical-Chemical Interactions," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    2. Yu-Fei Gao & Lei Chen & Yu-Dong Cai & Kai-Yan Feng & Tao Huang & Yang Jiang, 2012. "Predicting Metabolic Pathways of Small Molecules and Enzymes Based on Interaction Information of Chemicals and Proteins," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0029491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.