IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0024920.html
   My bibliography  Save this article

Using Noun Phrases for Navigating Biomedical Literature on Pubmed: How Many Updates Are We Losing Track of?

Author

Listed:
  • Devabhaktuni Srikrishna
  • Marc A Coram

Abstract

Author-supplied citations are a fraction of the related literature for a paper. The “related citations” on PubMed is typically dozens or hundreds of results long, and does not offer hints why these results are related. Using noun phrases derived from the sentences of the paper, we show it is possible to more transparently navigate to PubMed updates through search terms that can associate a paper with its citations. The algorithm to generate these search terms involved automatically extracting noun phrases from the paper using natural language processing tools, and ranking them by the number of occurrences in the paper compared to the number of occurrences on the web. We define search queries having at least one instance of overlap between the author-supplied citations of the paper and the top 20 search results as citation validated (CV). When the overlapping citations were written by same authors as the paper itself, we define it as CV-S and different authors is defined as CV-D. For a systematic sample of 883 papers on PubMed Central, at least one of the search terms for 86% of the papers is CV-D versus 65% for the top 20 PubMed “related citations.” We hypothesize these quantities computed for the 20 million papers on PubMed to differ within 5% of these percentages. Averaged across all 883 papers, 5 search terms are CV-D, and 10 search terms are CV-S, and 6 unique citations validate these searches. Potentially related literature uncovered by citation-validated searches (either CV-S or CV-D) are on the order of ten per paper – many more if the remaining searches that are not citation-validated are taken into account. The significance and relationship of each search result to the paper can only be vetted and explained by a researcher with knowledge of or interest in that paper.

Suggested Citation

  • Devabhaktuni Srikrishna & Marc A Coram, 2011. "Using Noun Phrases for Navigating Biomedical Literature on Pubmed: How Many Updates Are We Losing Track of?," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
  • Handle: RePEc:plo:pone00:0024920
    DOI: 10.1371/journal.pone.0024920
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024920
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0024920&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0024920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M.H. MacRoberts & B.R. MacRoberts, 2010. "Problems of citation analysis: A study of uncited and seldom-cited influences," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(1), pages 1-12, January.
    2. Zhaohui Sun & Mounir Errami & Tara Long & Chris Renard & Nishant Choradia & Harold Garner, 2010. "Systematic Characterizations of Text Similarity in Full Text Biomedical Publications," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-6, September.
    3. M.H. MacRoberts & B.R. MacRoberts, 2010. "Problems of citation analysis: A study of uncited and seldom‐cited influences," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(1), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sten F Odenwald, 2020. "A citation study of earth science projects in citizen science," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-26, July.
    2. Martin Ricker, 2017. "Letter to the Editor: About the quality and impact of scientific articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1851-1855, June.
    3. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    4. Horbach, Serge & Aagaard, Kaare & Schneider, Jesper W., 2021. "Meta-Research: How problematic citing practices distort science," MetaArXiv aqyhg, Center for Open Science.
    5. Siluo Yang & Feng Ma & Yanhui Song & Junping Qiu, 2010. "A longitudinal analysis of citation distribution breadth for Chinese scholars," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(3), pages 755-765, December.
    6. Hu, Zewen & Wu, Yishan, 2014. "Regularity in the time-dependent distribution of the percentage of never-cited papers: An empirical pilot study based on the six journals," Journal of Informetrics, Elsevier, vol. 8(1), pages 136-146.
    7. Zewen Hu & Yishan Wu & Jianjun Sun, 2018. "A quantitative analysis of determinants of non-citation using a panel data model," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 843-861, August.
    8. Lawrence Smolinsky & Aaron Lercher, 2012. "Citation rates in mathematics: a study of variation by subdiscipline," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 911-924, June.
    9. Tobias Opthof & Loet Leydesdorff, 2011. "A comment to the paper by Waltman et al., Scientometrics, 87, 467–481, 2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 1011-1016, September.
    10. Lutz Bornmann & Robin Haunschild, 2017. "Does evaluative scientometrics lose its main focus on scientific quality by the new orientation towards societal impact?," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 937-943, February.
    11. Horbach, Serge P. J. M. & Aagaard, Kaare & Schneider, Jesper W., 2021. "Meta-Research: How problematic citing practices distort science," MetaArXiv aqyhg_v1, Center for Open Science.
    12. Andrey Lovakov & Elena Agadullina, 2019. "Bibliometric analysis of publications from post-Soviet countries in psychological journals in 1992–2017," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1157-1171, May.
    13. Jianhua Hou & Jiantao Ye, 2020. "Are uncited papers necessarily all nonimpact papers? A quantitative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1631-1662, August.
    14. Bornmann, Lutz & Haunschild, Robin & Mutz, Rüdiger, 2020. "Should citations be field-normalized in evaluative bibliometrics? An empirical analysis based on propensity score matching," Journal of Informetrics, Elsevier, vol. 14(4).
    15. Thelwall, Mike, 2017. "Three practical field normalised alternative indicator formulae for research evaluation," Journal of Informetrics, Elsevier, vol. 11(1), pages 128-151.
    16. Mike Thelwall, 2019. "The influence of highly cited papers on field normalised indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 519-537, February.
    17. Sibele Fausto & Fabio A Machado & Luiz Fernando J Bento & Atila Iamarino & Tatiana R Nahas & David S Munger, 2012. "Research Blogging: Indexing and Registering the Change in Science 2.0," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-10, December.
    18. Ehsan Mohammadi & Mike Thelwall, 2013. "Assessing non-standard article impact using F1000 labels," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 383-395, November.
    19. Michael Calver & Kate Bryant & Grant Wardell-Johnson, 2018. "Quantifying the internationality and multidisciplinarity of authors and journals using ecological statistics," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 731-748, May.
    20. Isabel Bernal, 2013. "Open Access and the Changing Landscape of Research Impact Indicators: New Roles for Repositories," Publications, MDPI, vol. 1(2), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0024920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.