IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0022169.html
   My bibliography  Save this article

Experimentally Guided Computational Model Discovers Important Elements for Social Behavior in Myxobacteria

Author

Listed:
  • Melisa Hendrata
  • Zhe Yang
  • Renate Lux
  • Wenyuan Shi

Abstract

Identifying essential factors in cellular interactions and organized movement of cells is important in predicting behavioral phenotypes exhibited by many bacterial cells. We chose to study Myxococcus xanthus, a soil bacterium whose individual cell behavior changes while in groups, leading to spontaneous formation of aggregation center during the early stage of fruiting body development. In this paper, we develop a cell-based computational model that solely relies on experimentally determined parameters to investigate minimal elements required to produce the observed social behaviors in M. xanthus. The model verifies previously known essential parameters and identifies one novel parameter, the active turning, which we define as the ability and tendency of a cell to turn to a certain angle without the presence of any obvious external factors. The simulation is able to produce both gliding pattern and spontaneous aggregation center formation as observed in experiments. The model is tested against several known M. xanthus mutants and our modification of parameter values relevant for the individual mutants produces good phenotypic agreements. This outcome indicates the strong predictive potential of our model for the social behaviors of uncharacterized mutants and their expected phenotypes during development.

Suggested Citation

  • Melisa Hendrata & Zhe Yang & Renate Lux & Wenyuan Shi, 2011. "Experimentally Guided Computational Model Discovers Important Elements for Social Behavior in Myxobacteria," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-11, July.
  • Handle: RePEc:plo:pone00:0022169
    DOI: 10.1371/journal.pone.0022169
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0022169
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0022169&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0022169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexey J. Merz & Magdalene So & Michael P. Sheetz, 2000. "Pilus retraction powers bacterial twitching motility," Nature, Nature, vol. 407(6800), pages 98-102, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonasz B. Patkowski & Tobias Dahlberg & Himani Amin & Dharmender K. Gahlot & Sukhithasri Vijayrajratnam & Joseph P. Vogel & Matthew S. Francis & Joseph L. Baker & Magnus Andersson & Tiago R. D. Costa, 2023. "The F-pilus biomechanical adaptability accelerates conjugative dissemination of antimicrobial resistance and biofilm formation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Sara Rombouts & Anna Mas & Antoine Gall & Jean-Bernard Fiche & Tâm Mignot & Marcelo Nollmann, 2023. "Multi-scale dynamic imaging reveals that cooperative motility behaviors promote efficient predation in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0022169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.