IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v407y2000i6800d10.1038_35024105.html
   My bibliography  Save this article

Pilus retraction powers bacterial twitching motility

Author

Listed:
  • Alexey J. Merz

    (Oregon Health Sciences University
    Dartmouth Medical School)

  • Magdalene So

    (Oregon Health Sciences University)

  • Michael P. Sheetz

    (Duke University Medical School
    Columbia University)

Abstract

Twitching and social gliding motility allow many Gram negative bacteria to crawl along surfaces, and are implicated in a wide range of biological functions1. Type IV pili (Tfp) are required for twitching and social gliding, but the mechanism by which these filaments promote motility has remained enigmatic1,2,3,4. Here we use laser tweezers5 to show that Tfp forcefully retract. Neisseria gonorrhoeae cells that produce Tfp actively crawl on a glass surface and form adherent microcolonies. When laser tweezers are used to place and hold cells near a microcolony, retractile forces pull the cells toward the microcolony. In quantitative experiments, the Tfp of immobilized bacteria bind to latex beads and retract, pulling beads from the tweezers at forces that can exceed 80 pN. Episodes of retraction terminate with release or breakage of the Tfp tether. Both motility and retraction mediated by Tfp occur at about 1 µm s-1 and require protein synthesis and function of the PilT protein. Our experiments establish that Tfp filaments retract, generate substantial force and directly mediate cell movement.

Suggested Citation

  • Alexey J. Merz & Magdalene So & Michael P. Sheetz, 2000. "Pilus retraction powers bacterial twitching motility," Nature, Nature, vol. 407(6800), pages 98-102, September.
  • Handle: RePEc:nat:nature:v:407:y:2000:i:6800:d:10.1038_35024105
    DOI: 10.1038/35024105
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35024105
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35024105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melisa Hendrata & Zhe Yang & Renate Lux & Wenyuan Shi, 2011. "Experimentally Guided Computational Model Discovers Important Elements for Social Behavior in Myxobacteria," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-11, July.
    2. Sara Rombouts & Anna Mas & Antoine Gall & Jean-Bernard Fiche & Tâm Mignot & Marcelo Nollmann, 2023. "Multi-scale dynamic imaging reveals that cooperative motility behaviors promote efficient predation in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Jonasz B. Patkowski & Tobias Dahlberg & Himani Amin & Dharmender K. Gahlot & Sukhithasri Vijayrajratnam & Joseph P. Vogel & Matthew S. Francis & Joseph L. Baker & Magnus Andersson & Tiago R. D. Costa, 2023. "The F-pilus biomechanical adaptability accelerates conjugative dissemination of antimicrobial resistance and biofilm formation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:407:y:2000:i:6800:d:10.1038_35024105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.