IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0020039.html
   My bibliography  Save this article

Exponential Random Graph Modeling for Complex Brain Networks

Author

Listed:
  • Sean L Simpson
  • Satoru Hayasaka
  • Paul J Laurienti

Abstract

Exponential random graph models (ERGMs), also known as p* models, have been utilized extensively in the social science literature to study complex networks and how their global structure depends on underlying structural components. However, the literature on their use in biological networks (especially brain networks) has remained sparse. Descriptive models based on a specific feature of the graph (clustering coefficient, degree distribution, etc.) have dominated connectivity research in neuroscience. Corresponding generative models have been developed to reproduce one of these features. However, the complexity inherent in whole-brain network data necessitates the development and use of tools that allow the systematic exploration of several features simultaneously and how they interact to form the global network architecture. ERGMs provide a statistically principled approach to the assessment of how a set of interacting local brain network features gives rise to the global structure. We illustrate the utility of ERGMs for modeling, analyzing, and simulating complex whole-brain networks with network data from normal subjects. We also provide a foundation for the selection of important local features through the implementation and assessment of three selection approaches: a traditional p-value based backward selection approach, an information criterion approach (AIC), and a graphical goodness of fit (GOF) approach. The graphical GOF approach serves as the best method given the scientific interest in being able to capture and reproduce the structure of fitted brain networks.

Suggested Citation

  • Sean L Simpson & Satoru Hayasaka & Paul J Laurienti, 2011. "Exponential Random Graph Modeling for Complex Brain Networks," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-11, May.
  • Handle: RePEc:plo:pone00:0020039
    DOI: 10.1371/journal.pone.0020039
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020039
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0020039&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0020039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Garry Robins & Philippa Pattison & Stanley Wasserman, 1999. "Logit models and logistic regressions for social networks: III. Valued relations," Psychometrika, Springer;The Psychometric Society, vol. 64(3), pages 371-394, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruce A Desmarais & Skyler J Cranmer, 2012. "Statistical Inference for Valued-Edge Networks: The Generalized Exponential Random Graph Model," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-12, January.
    2. Etsuji Suzuki & Eiji Yamamoto & Soshi Takao & Ichiro Kawachi & S V Subramanian, 2012. "Clarifying the Use of Aggregated Exposures in Multilevel Models: Self-Included vs. Self-Excluded Measures," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-9, December.
    3. Lee, Jihui & Li, Gen & Wilson, James D., 2020. "Varying-coefficient models for dynamic networks," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    4. Abhijit Chakraborty & Hazem Krichene & Hiroyasu Inoue & Yoshi Fujiwara, 2019. "Exponential random graph models for the Japanese bipartite network of banks and firms," Journal of Computational Social Science, Springer, vol. 2(1), pages 3-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel E. Sosa & Steven D. Eppinger & Craig M. Rowles, 2004. "The Misalignment of Product Architecture and Organizational Structure in Complex Product Development," Management Science, INFORMS, vol. 50(12), pages 1674-1689, December.
    2. Liu, Jie & Ge, Huilin, 2022. "Collaboration mechanisms and community detection of statisticians based on ERGMs and kNN-walktrap," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
    4. Termeh Shafie & David Schoch, 2021. "Multiplexity analysis of networks using multigraph representations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1425-1444, December.
    5. Alessandro Lomi & Philippa Pattison, 2006. "Manufacturing Relations: An Empirical Study of the Organization of Production Across Multiple Networks," Organization Science, INFORMS, vol. 17(3), pages 313-332, June.
    6. Ronald L. Breiger & John W. Mohr, 2004. "Institutional Logics from the Aggregation of Organizational Networks: Operational Procedures for the Analysis of Counted Data," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 17-43, May.
    7. Chu-Shore, Jesse, 2010. "Homogenization and Specialization Effects of International Trade: Are Cultural Goods Exceptional?," World Development, Elsevier, vol. 38(1), pages 37-47, January.
    8. Slobodan Kacanski & Dean Lusher, 2017. "The Application of Social Network Analysis to Accounting and Auditing," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 7(3), pages 182-197, July.
    9. John Skvoretz & Filip Agneessens, 2007. "Reciprocity, Multiplexity, and Exchange: Measures," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(3), pages 341-357, June.
    10. Xu, Helian & Feng, Lianyue & Wu, Gang & Zhang, Qi, 2021. "Evolution of structural properties and its determinants of global waste paper trade network based on temporal exponential random graph models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Paulo Reis Mourao, 2021. "Footsteps in the sand: studying refugee paths since 2005 through a network analysis of 205 territories," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(2), pages 563-600, April.
    12. Domenico De Stefano & Susanna Zaccarin, 2013. "Modelling Multiple Interactions in Science and Technology Networks," Industry and Innovation, Taylor & Francis Journals, vol. 20(3), pages 221-240, April.
    13. Yingjie Lu & Xinwei Wang & Lin Su & Han Zhao, 2023. "Multiplex Social Network Analysis to Understand the Social Engagement of Patients in Online Health Communities," Mathematics, MDPI, vol. 11(21), pages 1-20, October.
    14. Vögtle, Eva Maria & Windzio, Michael, 2015. "The network of international student mobility: Enlargement and consolidation of the European transnational education space?," TranState Working Papers 190, University of Bremen, Collaborative Research Center 597: Transformations of the State.
    15. Tom Broekel & Pierre-Alexandre Balland & Martijn Burger & Frank Oort, 2014. "Modeling knowledge networks in economic geography: a discussion of four methods," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 423-452, September.
    16. Sebastian Spaeth & Sven Niederhöfer, 2022. "Compatibility promotion between platforms: The role of open technology standards and giant platforms," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 1891-1915, December.
    17. Ivan Cucco, 2014. "Network-based policies and innovation networks in two Italian regions: a comparison through a social selection model," STUDI ECONOMICI, FrancoAngeli Editore, vol. 2014(114), pages 78-96.
    18. Bruce A Desmarais & Skyler J Cranmer, 2012. "Statistical Inference for Valued-Edge Networks: The Generalized Exponential Random Graph Model," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-12, January.
    19. Johannes Pol, 2019. "Introduction to Network Modeling Using Exponential Random Graph Models (ERGM): Theory and an Application Using R-Project," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 845-875, October.
    20. He, Xi-jun & Dong, Yan-bo & Wu, Yu-ying & Jiang, Guo-rui & Zheng, Yao, 2019. "Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 443-457.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0020039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.