IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0018476.html
   My bibliography  Save this article

Prediction of Antimicrobial Peptides Based on Sequence Alignment and Feature Selection Methods

Author

Listed:
  • Ping Wang
  • Lele Hu
  • Guiyou Liu
  • Nan Jiang
  • Xiaoyun Chen
  • Jianyong Xu
  • Wen Zheng
  • Li Li
  • Ming Tan
  • Zugen Chen
  • Hui Song
  • Yu-Dong Cai
  • Kuo-Chen Chou

Abstract

Antimicrobial peptides (AMPs) represent a class of natural peptides that form a part of the innate immune system, and this kind of ‘nature's antibiotics’ is quite promising for solving the problem of increasing antibiotic resistance. In view of this, it is highly desired to develop an effective computational method for accurately predicting novel AMPs because it can provide us with more candidates and useful insights for drug design. In this study, a new method for predicting AMPs was implemented by integrating the sequence alignment method and the feature selection method. It was observed that, the overall jackknife success rate by the new predictor on a newly constructed benchmark dataset was over 80.23%, and the Mathews correlation coefficient is 0.73, indicating a good prediction. Moreover, it is indicated by an in-depth feature analysis that the results are quite consistent with the previously known knowledge that some amino acids are preferential in AMPs and that these amino acids do play an important role for the antimicrobial activity. For the convenience of most experimental scientists who want to use the prediction method without the interest to follow the mathematical details, a user-friendly web-server is provided at http://amp.biosino.org/.

Suggested Citation

  • Ping Wang & Lele Hu & Guiyou Liu & Nan Jiang & Xiaoyun Chen & Jianyong Xu & Wen Zheng & Li Li & Ming Tan & Zugen Chen & Hui Song & Yu-Dong Cai & Kuo-Chen Chou, 2011. "Prediction of Antimicrobial Peptides Based on Sequence Alignment and Feature Selection Methods," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-9, April.
  • Handle: RePEc:plo:pone00:0018476
    DOI: 10.1371/journal.pone.0018476
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018476
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0018476&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0018476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guohua Huang & Yuchao Zhang & Lei Chen & Ning Zhang & Tao Huang & Yu-Dong Cai, 2014. "Prediction of Multi-Type Membrane Proteins in Human by an Integrated Approach," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    2. Jianjun He & Hong Gu & Wenqi Liu, 2012. "Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-10, June.
    3. Giuseppe Maccari & Mariagrazia Di Luca & Riccardo Nifosí & Francesco Cardarelli & Giovanni Signore & Claudia Boccardi & Angelo Bifone, 2013. "Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-12, September.
    4. Catherine Mooney & Niall J Haslam & Gianluca Pollastri & Denis C Shields, 2012. "Towards the Improved Discovery and Design of Functional Peptides: Common Features of Diverse Classes Permit Generalized Prediction of Bioactivity," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-12, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0018476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.